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In a classic study, Kacser & Burns (1981, Genetics 97, 639-666) demonstrated that given certain
plausible assumptions, the flux in a metabolic pathway was more or less indifferent to the activity of
any of the enzymes in the pathway taken singly. It was inferred from this that the observed dominance
of most wild-type alleles with respect to loss-of-function mutations did not require an adaptive, meaning
selectionist, explanation. Cornish-Bowden (1987, J. theor. Biol. 125, 333-338) showed that the
Kacser-Burns inference was not valid when substrate concentrations were large relative to the relevant
Michaelis constants. We find that in a randomly constructed functional pathway, even when substrate
levels are small, one can expect high values of control coefficients for metabolic flux in the presence
of significant nonlinearities as exemplified by enzymes with Hill coefficients ranging from two to six,
or by the existence of oscillatory loops. Under these conditions the flux can be quite sensitive to
changes in enzyme activity as might be caused by inactivating one of the two alleles in a diploid.
Therefore, the phenomenon of dominance cannot be a trivial “default” consequence of physiology but
must be intimately linked to the manner in which metabolic networks have been moulded by natural

selection.

Introduction

Few issues in genetics have been as contentious as the
basis of dominance and recessiveness (Nanjundiah,
1994). A major step towards understanding the
problem, and a plausible solution, was provided by
Kacser & Burns (1981). The solution emerged
through a study of how flux is regulated in metabolic
pathways (Kacser & Burns, 1973, 1981; Heinrich &
Rappoport, 1974). It was shown that when an
unbranched pathway is made up of large number of
linear (i.e. Michaelis-Menten) enzyme-catalysed
reactions, all operating well below saturation, the
overall flux at steady state is insensitive to the level of
any single enzyme in the pathway. Mathematically,
this can be expressed as follows in terms of the
sensitivity theorem. Let J be the steady-state flux
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and e the concentration (more properly, activity) of
any enzyme. Then the flux control coefficient
C, defined as JdInJ/dlne, and a measure of the
sensitivity of J to changes in e, is of order 1/n where
n is the number of reactions in the pathway.
Therefore, for large n, C « 1. In other words J hardly
changes at all when e is varied—short of falling to
zero, at which point the pathway may no longer
operate.

In relation to the problem of dominance and
recessiveness, the sensitivity theorem shows that given
the right conditions, when a gene codes for an
enzyme, cellular physiology is indifferent to whether
the number of copies of the gene is two or one. So a
single dose of a gene should do as well as two and
loss-of-function (null) mutations should be recessive
to functional (wild-type) alleles. The implication is
that in order to explain the observed dominance of
the prevailing wild type to the overwhelming majority
of mutant alleles, one needs to go no further than
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conventional biochemistry. Put differently, one does
not need to invoke natural selection and seek an
adaptive explanation for the dominance of the wild
type—as one might want to in thinking of other
properties of genetic systems, for instance. A purely
physiological explanation for dominance ought to be
the hypothesis of choice. Apart from the obvious
restriction to genes that encode enzymes and to
pathways involving a large number of steps, this
inference depends on the assumptions made in
deriving the sensitivity theorem. The chief among
these are that the relevant enzymes (i) operate below
saturation, (ii) obey linecar (Michaelis—Menten)
kinetics, (iii) are not subject to feedback regulation
and (iv) constitute a pathway that is functioning at a
steady state. In principle, a violation of any of these
conditions could invalidate the conclusion. For
example, most enzymes do operate below saturation
(equivalent to the familiar S« K,s assumption
relating the free substrate level to the level needed for
half-maximal reaction velocity). But this begs the
question of why they do so; the answer, as
Cornish-Bowden (1987) points out, must be “... a
consequence of selection, not mathematics”. Be
that as it may, a conventional point of view would
dictate accepting (i) and (iv) as plausible assumptions.
That leaves us with the task of examining what
happens to the sensitivity theorem when enzymes
obey nonlinear kinetics and feed-backs are permitted.
As we will show, high sensitivities can result even
when substrate concentrations are low, warranting
a second look at evolutionary explanations for
dominance.

Model

GENERAL SCHEME
We consider a reversible pathway of the form

S 282 e ... 28n) 2 Sh+1)

where S(7) is the substrate in reaction i catalysed by
enzyme E(i), and there are 20 enzymatic steps in all
(n=21). Each enzyme is characterised by the
parameters V,(i), V(i) (standing for backward and
forward maximal velocity respectively), M,(i), M(i)
(the corresponding ““Michaelis” constants) and K(i),
the equilibrium constant. (The quotation marks
around “Michaelis” are as a reminder that in the case
of a nonlinear enzyme these are not true Michaelis
constants.) Only four of these five parameters can be
chosen independently; the Haldane relation demands
that K = M,V,;/ MV, for every i. The levels of S(1)
and S(n + 1) are held fixed. At steady state, the flux

through the pathway, J, is the same as the velocity of
any reaction step, which for the step from S(i — 1) to
Si) is given by

V,(i)[S(i - IS<((?)]

M,»(i)[l + 1558)} +SG—1)

J:

when all the enzymes are of the Michaelis—Menten
type. Cooperativity, or nonlinearity, is modelled by
the mathematically justifiable approximation of
raising the relevant S(i) to the power (i), where A(i)
is a Hill coefficient.

The effect of feedback is considered separately by
inserting a biochemical oscillatory mechanism within
the pathway. The oscillator, consisting of three
components o, f and y, was borrowed from the
scheme advanced by Goldbeter & Segel (1977) for
cyclic AMP oscillations in the cellular slime mold
Dictyostelium. (f is a product of the hydrolysis of o
and the o — f reaction is catalysed by an allosteric
enzyme which is subject to a high degree of activation
by y.) It was inserted as a “box’’ between substrates
S(18), the input into the oscillator, and S(19), the
output. In relation to the rest of the pathway,
v =k(1)S(18) is a constant input flux in the rate
equation for o and k(2)y is a time-dependent output
flux from the oscillator and at the same time an input
term for the rate of change of S(19). Other than this
oscillatory “box”, the rest of the pathway was exactly
as described earlier except that in this case all the
enzymes were Michaelian.

CHOICE OF PARAMETERS

The pathway consisted of 20 steps. We attempted
to choose as unrestricted a set of parameter values as
possible. The choices were limited by two consider-
ations. One was that we wanted a net flux from left
to right, that is, from S(1) to S(n + 1). This could
have been achieved by taking each K(i)> 1.
However, we also wanted to consider a pathway in
which the overall reaction could proceed in either
direction, suggesting a choice of K@G)=1 A
compromise was reached by taking V(i) > V,(i) for
each i. Our other consideration was that after
allowing for the previous restriction, all the
parameters of the pathway had to be chosen
randomly: the point being that we wanted to monitor
the control coefficient in a background of more-or-
less total uncertainty with regard to the characteristics
of the enzymes governing the individual steps. All K
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values were put equal to 1. V; values were assumed to
be independently and uniformly distributed random
numbers varying in the range 1 to 10 and V), values
varied similarly in the range 1 to V}, so that V,> V,
for each enzyme separately. The M, values were also
chosen randomly in the range 1 to 10, and M, values
were calculated from the Haldane relationship. When
nonlinearities were considered, / values were chosen
to vary between two and six, also from a uniformly
distributed set of random numbers. A range of initial
concentrations S(1) was examined, from S(1) = 0.5
(all enzymes below saturation) to S(1) = 100 (essen-
tially all enzymes saturated). S(21) was invariably
taken as zero. In the event that an oscillatory step was
interposed—as explained, this was between S(18) and
S(19)—all parameter values for the oscillatory
intermediates were as in Goldbeter & Segel (1977)
except for their “dilution factor”” which we took equal
to ten instead of five for reasons of computational
convenience.

CALCULATIONS

Ideally, one would like to calculate a flux J from
S(1), S(21) and the enzyme parameters. The algebraic
manipulations required to do so were forbidding, and
we adopted the following strategy instead. We
assumed a value for J and S(1) and calculated
downstream, as it were, until S(21) was reached. On
occasion an intermediate S(i) would have a negative
value, implying that the initial value of J was too high
to be sustained. When that happened J was lowered
by a small amount and the exercise repeated. The
procedure was continued until a value of S(21) ~ 0
was reached. The final value of J was taken to be the
maximum flux that could be supported by the
pathway (given the assumed S(1), and S(21) = 0).
Control coefficients were estimated by choosing an
enzyme at random and ‘“‘mutating” it by systemati-
cally varying its V, (and so ¥V, as well) in small
increments. By re-calculating J with these new values,
we were able to derive a quasi-continuous relationship
between J and enzyme activity. By repeating the
procedure five times we were able to compare average
values of J with values according to the “low
substrate level” approximation in Kacser & Burns
(1981). This was followed by a numerical calculation
of the control coefficient C at the starting value of V.
Twenty replicates of the entire process were run, the
choice of which enzyme to mutate being made
randomly and independently on each occasion. From
the data we estimated a typical, or in a loose sense
“average”, control coefficient characterising the
pathway as a whole.

When the oscillator was interposed between S(18)
and S(19), a short cut was used. We started with an
input flux that fell just short of permitting oscillatory
behaviour and then increased this flux in small
increments. The magnitude of the increments
corresponded to that expected (on the basis of the
previous calculation) from ‘“mutating” an upstream
enzyme.

Results

In what follows we use the short form K-B to stand
for the Kacser & Burns (1981) publication and the
conclusions that follow from the assumption that S(i)
is small compared with M,(i) and M,(i) for all i. In
all cases uncertainties prefixed by the sign + represent
standard deviations.

(1) In the absence of cooperativity, and at low
substrate concentrations [S(1) =0.5], so that all
enzymes work below saturation, the K-B result is
quite robust. The computed flux is 89.6 + 0.4%
and the mean control coefficient is 99.7 + 3.1% of
that expected from K-B. Interestingly, C continues
to behave as expected (104.98 +2.02%) when
S(1) = 75, at which point most enzymes are expected
to be saturated. Not surprisingly, at S(1) =75,
absolute fluxes are on average about 10% of the K-B
expectation, i.e. much lower. Reducing the activity of
an enzyme by one-half brings about a further decrease
in the flux of around 5%. The outcome is different
when the activities of many enzymes are lowered
simultaneously. Even so, with ten out of 20 enzyme
activities being reduced by one-half, the flux remains
at 67.5 + 33% of its starting value.

(i1) With cooperativity, the final outcome depends
on both the level of saturation of an enzyme taken at
random and on how many steps are cooperative. At
low substrate levels [S(1) = 0.5] the flux decreases
steadily with the number of steps that are cooperative;
the control coefficient C on the other hand first
increases and then decreases. When just two of the 20
steps in the pathway are catalysed by cooperative
enzymes, the average value of C goes up almost
three-fold, from 0.041 +0.023 to 0.116 + 0.156.
When all 20 steps are cooperative, C is 0.043 + 0.080.
Correspondingly, the average flux upon decreasing
the activity of a single enzyme by one-half is 92% of
its starting value and if the activities of any ten of the
20 enzymes are reduced simultaneously by one-half,
the flux is 68% of the starting value, standard
deviations being of the same order as in the absence
of cooperativity.

(iii) Interposing an oscillator between substrates
S(18) and S(19) has a striking effect on the output
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flux, by which we mean in this case the time-averaged
flux from S(20) to S(21). When the input flux to the
oscillator is changed from 0.099 to 0.100, that is, by
as little as 1%, the period of the oscillation changes
by 17.4% and the output flux by 14.9%. A 3%
increase in input flux, still much smaller than that
expected under the best-case scenario if the activity of
one of the upstream enzymes were to decrease by
one-half, causes an 89% increase in period and a
doubling of the output flux.

Discussion

We wanted to examine the consequences of
reducing the activity of any one enzyme by one-half
for a randomly constructed metabolic pathway; a
pathway that was cobbled together, so to speak,
rather than being the product of elaborate design.
Equilibrium constants were taken to equal one so as
not to bias the direction of equilibrium. Enzyme
parameters were chosen randomly, once again with a
view to eliminate the notion of design. Therefore, all
our results refer to ““average’ expectations and this is
reflected in the fact that actual outcomes vary from
one simulation to the next. Obviously, in the case of
a well-designed metabolic network, meaning one that
has been appropriately moulded by selection, each of
the perturbations to which we subject the pathway
could well have had a far milder outcome than that
we show in our results.

In the absence of nonlinear behaviour, the K-B
result has an impressive range of validity [Results, (i)].
But in its presence, our findings reinforce the
conclusion reached by Cornish-Bowden (1987): on
the face of it, there is no reason to expect that control
coefficients will be as low as those predicted by the
model of Kacser & Burns (1981). This is so even when
each enzyme in the pathway functions below
saturation. [When S(1) = 0.5 and M, is chosen to lie
between one and ten, the maximum level of saturation
(S)/M;) is 50% and on average 18 of 20 enzymes have
more than three-fourths of their binding sites
unoccupied.] Nonlinear enzyme behaviour, as
reflected in a velocity vs. substrate relationship that
deviates significantly from the Michaelian pattern,
can cause the flux to become sensitive to enzyme
activities. Admittedly our model for cooperativity

assumes largish Hill coefficients (ranging from two to
six), but they lie within the range of values reported
in the literature. Cooperativity causes a relatively
steep rise in enzyme activity as a function of sub-
strate concentration at intermediate concentrations,
whereas the activity is fairly constant at both low and
high substrate levels. There can be a sensitive
dependence of flux on enzyme activity when some
steps, but not all, are catalysed by cooperative
enzymes [Results, (ii)]. A different aspect of enzyme
nonlinearity is the possible existence of feedback
loops leading to oscillations in metabolite concen-
trations. This too can lead to drastic consequences for
the control coefficient [Results, (iii)]. Small changes in
input—indeed, far smaller than expected to occur
when the activity of an enzyme is lowered by
one-half—can lead to large, and potentially signifi-
cant, changes in output. Both this conclusion and the
one reached in the previous paragraph are based on
the average outcome of mutating any enzyme in the
pathway, not just a “‘nonlinear” enzyme.

In sum, it is advisable to be cautious in seeking to
explain the origin of domnance from K-B. Domi-
nance of the wild type can be expected when substrate
levels are low, conceivably even when they are high,
but not when enzymes exhibit significantly nonlinear
behaviour. A selective explanation would then seem
to be called for.
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