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The 20 naturally occurring amino acids have different environmental preferences of where they are likely
to occur in protein structures. Environments in a protein can be classified by their proximity to solvent by
the residue depth measure. Since the frequencies of amino acids are different at various depth levels, the
substitution frequencies should vary according to depth. To quantify these substitution frequencies, we
built depth dependent substitution matrices. The dataset used for creation of the matrices consisted of
3696 high quality, non redundant pairwise protein structural alignments. One of the applications of these
matrices is to predict the tolerance of mutations in different protein environments. Using these sub-
stitution scores the prediction of deleterious mutations was done on 3500 mutations in T4 lysozyme and
CcdB. The accuracy of the technique in terms of the Matthews Correlation Coefficient (MCC) is 0.48 on
the CcdB testing set, while the best of the other tested methods has an MCC of 0.40. Further de-
velopments in these substitution matrices could help in improving structure-sequence alignment for
protein 3D structure modeling.

© 2017 Published by Elsevier Ltd.
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Fig. 1. A cross section of a protein (human dihydrofolate reductase, PDB id 1MVT)
stratifying microenvironments by (a) SASA (b) Depth. All atoms of the protein are
rendered in sphere representation and are coloured according to SASA and depth using
PyMol (DeLano, 2002).
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1. Introduction

The 3D structure of a protein is key to determining its function
or biological role. The primary sequence of a protein folds into a
particular 3D shape, given a particular set of conditions (Anfinsen,
1973). The number of shapes that proteins fold into are limited, and
by various estimates, is of the order of 1000 (Chothia, 1992). It is
believed that the native fold of a protein is its minimum energy
conformation (Wolynes et al., 1995). This conformation is solely
dependent on its amino acid sequence. Any changes to the amino
acid chain could result in a perturbation of this 3D structure.

With respect to mutations of amino acids in proteins, one of the
key questions to answer, would be to determine if the mutations
could change the conformation of the protein sufficiently to affect
function. Note that the function of a protein could also be affected
bymutations that need not necessarily change its 3D shape. For the
purposes of this study we are only interested in those mutations
that affect the stability of the 3D structure of the protein. Our
motivation arises form that fact that ~80% of the Mendelian-
disease-associated single mutations are a consequence of protein
destabilization (Wang and Moult, 2001).

The effects of a single point mutation in a protein sequence are
most acutely felt by its immediate spatial neighbours. In essence,
every single amino acid in a protein is embedded in its own char-
acteristic microenvironment. Traditionally, solvent accessible sur-
face area (SASA) (Lee and Richards, 1971) was one of the ways in
which these microenvironments were categorized. SASA values
were classified into levels such as buried, intermediate and
exposed. Residues in the hydrophobic core of a globular protein
were typically buried while the polar residues that constituted the
periphery of the protein were exposed. This classification however
is rather coarse (Fig. 1a) and does not stratify the interior of the
protein adequately. A more concise description of the residue
environment is provided by the depth measure (Chakravarty and
Varadarajan, 1999). Residue (or atom) depth is defined as the dis-
tance of a residue (or atom) to the closest molecule of bulk solvent.
This definition offers a more stratified description of the protein
interior (Fig. 1b).

That residue depth is an apt descriptor of protein microenvi-
ronments is further evidenced from the many uses of depth. Res-
idue depth correlates better with hydrogen-deuterium exchange
data than SASA (Chakravarty and Varadarajan,1999). It is also a vital
feature in the detection of post translational modification sites
(Pintar et al., 2003a, 2003b). In conjunction with SASA, depth has
been used to predict small molecule ligand binding sites and cav-
ities in proteins (Tan et al., 2013, 2011). Combining depth with
SASA, electrostatic and hydrogen bonding interactions has been
shown to effectively predict the pKa of ionizible groups in proteins
(Tan et al., 2013). Residue depth has been efficiently combined with
hydrophobicity and hydrophobic moment derived from the pri-
mary sequence of the protein to predict temperature sensitive
mutations (Tan et al., 2014). In combination with evolutionary
sequence profiles and SASA, depth could be used to recognize
native protein folds (Liu et al., 2007; Zhou and Zhou, 2005). In each
of the applications mentioned above the key aspect has been the
ability of depth to describe the immediate neighbourhood of amino
acid residues. In this study we are going to utilize this feature of
depth to determine how the immediate neighbourhood of an
amino acid is affected on mutation.

An observation that is crucial to our study is that the amino acid
abundance at different depth levels is markedly different (Fig. 2).
The depth preferences of some of the amino acids could be cate-
gorized based on the nature of their side chains. The polar amino
acids (N, Q, H, K, R, D, E) show a sharp decline in their abundance
with increase in depth. The hydrophobic amino acids (V, I, L, M, F)
Please cite this article in press as: Farheen, N., et al., Depth dependent am
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have an increase in abundance with increase in depth. The amino
acids S, T and G also behave like the polar amino acids only that the
decrease in abundance is not sharp. The amino acids A, Y and W
have their maximum abundance in an environment that is neither
deep nor shallow. Cysteines, though considered polar by some
studies, show the same behavior as non-polar residues while Pro-
lines, which is sometimes considered apolar, displays the same
tendency as polar residues. It is clear that with stratification by
depth, relative abundances of amino acids vary. We use this fact to
compute the likelihoods of amino acid substitutions. Note that
these trends are best observed by parameterizing protein envi-
ronment using Depth as opposed to SASA (Chakravarty and
Varadarajan, 1999).

Computations of substitution likelihoods have been well docu-
mented (Dayhoff and Schwartz, 1978; Henikoff and Henikoff, 1992)
and widely used from aligning two sequences to one another to
detecting homologous sequences (Altschul et al., 1990; Chenna
et al., 2003). The traditional substitution likelihoods bundled into
the so called substitution matrices, such as PAM and BLOSUM, are
ino acid substitution matrices and their use in predicting deleterious
x.doi.org/10.1016/j.pbiomolbio.2017.02.004



Fig. 2. Histograms of the relative abundance of amino acids at different depth levels <5 Å (blue), 5e8 Å (green) and>8 Å (orange). Normalization of the abundance was done depth
wise.
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however devoid of any context. In fact, amino acid substitutions
involving a pair of residues is averaged over several different
environmental and fold contexts. In the light of secondary structure
prediction and 3D structure modeling/evaluation exercises, amino
acid environments have to be described accurately. This implies
that an amino acid substitution table that considered not just the
likelihoods of pairwise substitutions but also the environmental
context and/or protein categories would be best suited for the
purpose (Abascal et al., 2007; Adachi and Hasegawa, 1996;
Arvestad, 2006; Braberg et al., 2012; Dimmic et al., 2002;
Goldman et al., 1998; Johnson et al., 1993; Jones et al., 1994;
Koshi and Goldstein, 1995; Lartillot and Philippe, 2004; Lüthy
et al., 1991; Madhusudhan et al., 2009; Mehta et al., 1995;
Overington et al., 1990; Rice and Eisenberg, 1997; Shi et al., 2001;
Thorne et al., 1996; Wako and Blundell, 1994). As depth is a
concise measure of amino acid environment, we developed depth
dependent substitution matrices that can capture the substitution
likelihoods in different environments. In this study we have cate-
gorized amino acids into 3 distinct environmentse residues that lie
in depth ranges <5 Å, between 5 and 8 Å and >8 Å. As described
earlier, the relative abundance of the residues in these depth en-
vironments are different and hence it is likely that their substitu-
tion rates would also differ in the different contexts. A symmetric
substitution matrix was computed for each of the depth environ-
ments considering a log-odds ratio of observed over expected
frequencies.

The efficacy of the matrices was tested by using it to predict the
destabilizing effects of single point mutations in protein sequences.
Other computational methods that address this question use a
combination of sequence and structural information to deduce the
effect of the mutation. The approaches for predicting the muta-
tional stability could be divided into sequence-based and structure-
based methods. Sequence based methods such as SIFT (Ng and
Henikoff, 2003), Polyphen (Adzhubei et al., 2010) and SuSPect
(Yates et al., 2014) rely onmultiple sequence alignments of proteins
to extract substitution trends from sequence profiles. Polyphen and
SuSPect also utilize structure features. SuSPect incorporates the
extraction of information from protein domains, PSSM, protein-
protein network interactions, position-specific known mutants
and is one of the methods compared to in this study. Most
structure-based methods are based on machine learning that fit a
non-linear function to experimental data. We have compared our
method (FADHM) to several such methods including I-Mutant
(Capriotti et al., 2005), Automute (Masso and Vaisman, 2010),
Please cite this article in press as: Farheen, N., et al., Depth dependent am
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mCSM (Pires et al., 2014a), SDM(Worth et al., 2011) and DUET (Pires
et al., 2014b). I-Mutant incorporates pH, temperature and mutation
type as features in its support vector machine. Automute is based
on a multi-body statistical potential that combines energy-based
and machine learning approaches. mCSM (Pires et al., 2014a) uses
a graph metric to summarize physiochemical interactions within a
cutoff distance and train them with a Gaussian process regression
model. SDM(Worth et al., 2011) is a statistical method that builds an
environment dependent substitution matrix. DUET (Pires et al.,
2014b) is a meta-algorithm combining mCSM and SDM.

Predictions made by the depth dependent substitution matrices
were benchmarked using saturation mutagenesis data available for
T4 Lysozyme (Rennell et al., 1991) and E. coli Controller of Cell Di-
vision or Death B (CcdB) protein (Adkar et al., 2012; Tripathi et al.,
2016). The accuracy of our predictions were compared to those
made by other methods described above.
2. Methods

2.1. Computation of residue depth

Depth is a concise descriptor of amino acid residue environment
(Chakravarty and Varadarajan, 1999; Pintar et al., 2003a, 2003b;
Tan et al., 2013, 2011). It is defined as the average distance of the
atoms of the residue to their nearest bulk solvent. In this study,
residue depth was computed by previously describedmethods (Tan
et al., 2013, 2011), using default parameters. Here, we have only
considered protein structures that had only a few or no missing
residues (see section 2.2). Missing residues could alter the distance
to the closest molecule of bulk solvent and hence affect depth
values.
2.2. Pairwise alignments for matrix creation

1607 structures were culled from the protein data bank (PDB)
(Berman et al., 2000)using PISCES(Wang and Dunbrack, 2003) and
home grown scripts such that their a) sequences were non-
redundant at 30% sequence identity, b) resolution was <3 Å with
R-factor < 0.3 and c) structures were missing fewer than 6
contiguous residues. Missing stretches were modeled using the
loop modeling (Fiser et al., 2000) module of MODELLER (Sali and
Blundell, 1993). Structures that had more than 6 missing residues
were discarded, as errors in loop modeling could be significant and
introduce errors in depth measurements.
ino acid substitution matrices and their use in predicting deleterious
x.doi.org/10.1016/j.pbiomolbio.2017.02.004
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BLAST (Altschul et al., 1990) was used to identify the homo-
logues of these 1607 proteins from the PDB. From this, 1426 ho-
mologues of 947 structures (from the initial 1607) were chosen
such that the e-values were less than 0.001 and pair-wise sequence
identities were less than 30%. From these 2383 (1426 þ 947)
structures, 3696 pair wise structure-structure alignments were
constructed using SALIGN (Braberg et al., 2012) such that the
SALIGN quality score was � 85% and the length difference between
the 2 aligned proteins was <35 residues. These alignments gave us
800,558 residue substitutions.
2.3. Creation of depth dependent substitution matrices

Multiple substitution matrices were created from the pair-wise
structure-structure alignments. All matrix values, Sdi;j, were ratios of
observed over expected residue substitution likelihoods and were
computed using similar formulae used in BLOSUM(Henikoff and
Henikoff, 1992).

Sdi;j ¼ 2$log2

 
qdi;j
edi;j

!
(1)

where i and j are the residues that are being substituted to one
another and d being the depth of the residue i. Note that in these
matrices, substitution of itoj is considered equivalent to that of jtoi.
qdi;j is the observed substitution probability and edi;j is the expected

probability. The matrix values are scaled by a factor of 2$log2,
similar to the BLOSUM62 matrix.

The observed probability is computed as

qdi;j ¼
f di;jP20

i¼1
P20

j¼1f
d
i;j

(2)

where f di;j is the number of substitutions of residue i to j (and vice

versa) at depth range d. The denominator of equation (2) is the total
number of observed residue substitutions.

The expected probability of residue substitution at the different
depth ranges is given by

edi;j ¼
(

pdi *p
d
j when i ¼ j

2$pdi *p
d
j when isj

(3)

where,pid is the probability of residue i at depth range d and is given
by

pdi ¼ qdi;j þ
X
isj

qdi;j
2

(4)
Fig. 3. Density plot of the depth difference between the aligned residues.
2.4. Database of single point mutants

Depth dependent substitutionmatrices were used to predict the
effect of single point mutations in proteins. The predictions were
trained on 1966 mutations of T4 Lysozyme (Rennell et al., 1991),
where 163 of the 164 amino acids of the protein were mutated to
one of 13 different amino acids (A, C, E, F, G, H, K, L, P, Q, R, S, and T)
after removal of the key catalytic residues (D10, E11, R145, and
R148). The prediction training was done using a grid search over
substitution values (searched in a range of �3.00 to 1.00 in steps of
0.25) in the three depth dependent matrices that could best
discriminate between deleterious (destabilizing) and neutral
Please cite this article in press as: Farheen, N., et al., Depth dependent am
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mutations.
With the optimal parameters derived from the training set, the

predictions were tested on another saturation mutagenesis set of
1534 mutants of the 101 residue long E. coli protein Controller of
cell division or death B (CcdB) (Adkar et al., 2012; Tripathi et al.,
2016) after removal of key catalytic residues (I24, I25, N95, F98,
W99, G100, and I101). For the training and testing sets the crystal
structures of T4 lysozyme (PDB code: 2LZM (Weaver andMatthews,
1987)) and CcdB (PDB code: 3VUB (Loris et al., 1999)) were used for
depth computations. The experimental studies for T4 Lysozyme
and CcdB ranked the severity of the mutant phenotype on a scale of
2e5 and 2e9 respectively. For both proteins, we considered level 2
to represent neutral (native like) mutations and all other levels to
be destabilizing.
3. Results

3.1. Matrix creation and optimization

It was decided apriori to have a set of three 20 � 20 depth
matrices, one each for exposed (E), intermediate (I) and buried (B)
environments. We first determined the optimal ranges of depth
values for these three matrices. As the computation of depth re-
ports a mean value and an associated standard deviation, we
decided that the minimum depth range for any of the 3 matrices
should be 1.5 Å. The lower bound of the matrix corresponding to
the exposed environment was set to a depth value of 2.5 Å. Its
upper bound was tested in the range of 4.0 Å to 5.5 Å in steps of
0.5 Å. The lower bound of the intermediate matrix was the upper
bound of the exposed matrix. It's upper bound was tested in the
range of its lower bound þ1.5 Å to 8.0 Å in steps of 0.5 Å. The lower
bound of the buried environment matrix was the upper bound of
the intermediate matrix and had no upper bound. For each com-
bination of the three ranges, an average root mean square distance,
DM, was computed between the matrices as

DM ¼
* ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i;j

�
Xi;j � Yi;j

�2
210

vuut +

where X and Yare either of the threematrices E,I or B (Fig. 4) and Xi,j

is the score for substituting amino acid i for j in matrix X. The depth
ranges with the highest DM score (1.95) and hence considered
optimal were (2.5e5.0 Å; 5.0e8.0 Å; > 8.0 Å). TheDM score averages
ino acid substitution matrices and their use in predicting deleterious
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Fig. 4. The three symmetric 20 � 20 depth dependent substitution at depth ranges of<5 Å (a),5-8Å (b) and >8 Å (c).
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over the root mean square distances of 1.44, 1.82 and 2.60 between
the matrix pairs of exposed-intermediate, buried-intermediate and
exposed-buried respectively.

The three depth dependent substitution matrices are all
distinctly different from one another as can be gauged from their
pairwise DM values. A closer look into the pairwise matrix
Please cite this article in press as: Farheen, N., et al., Depth dependent am
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comparison reveals that most of the substitution scores (in the
integral version) are different (Fig. 5aec and Table 2). In all, 200 of
the 210 substitution values change in the different matrices (see
section 3.3 for a more description of substitution trends).

A test of accuracy of the matrix values was to create a regular
substitution matrix. This composite matrix was created as
ino acid substitution matrices and their use in predicting deleterious
x.doi.org/10.1016/j.pbiomolbio.2017.02.004



Fig. 5. Histogram of score difference of matrices between (a) Intermediate and
Exposed residues (b) Buried and Intermediate residues (c) Buried and Exposed
residues.
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described in the methods section, only this time without taking
into consideration depth levels. When our composite matrix was
compared to the BLOSUM62 matrix, it was identical for 49%of the
substitution values and varied by ± 1 unit in 47% of the substitution
values. Here again, we believe that the differences of ± 1 are mainly
caused by rounding off the matrix values. This validates that the
three depth dependent matrices are stratified versions of the reg-
ular substitution matrices.
Please cite this article in press as: Farheen, N., et al., Depth dependent am
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3.2. Depth conservation in alignments

The substitution matrices were created from pair wise align-
ments of protein structures. Over 90% of the aligned residues had
depth differences of <1.5 Å, with 81% having differences of <1 Å
(Fig. 3). The depth differences were examined for different types of
substitutions i.e. polar to polar, polar to non-polar (or vice versa),
and non-polar to non-polar (Table 1). Polar residues substituted by
other polar residue showed the least variation in depth as these
residues are predominantly found in the outer layer of the protein.
Non-polar to non-polar residue substitutions showed larger depth
changes in comparison. A possible reason could be that non-polar
residues are present in larger proportions and interchange with
one another frequently at deeper depths. In this deep environment,
changes in amino acid size precipitously change their depth values.
The values of depth difference for non-polar to polar substitutions
(or vice versa) lie in between the two values discussed above.

3.3. Substitution trends

As discussed earlier, the relative abundances of the 20 amino
acids at different depth levels are different from one another
(Fig. 2). It is reasonable to expect that their substitution rates would
also vary accordingly. The depth dependent substitution matrices
capture these variations (Fig. 4). The substitution trends across
depth levels show that the polar amino acids are easier to substi-
tute at deeper depths while the hydrophobic amino acids show the
opposite trend and get harder to substitute. It should be noted
however that this higher/lower propensity of substitution is rela-
tive and at any depth amino acid self-substitutions score the
highest.

Some interesting information one can extract from the depth
substitution matrices are the substitution trends across depth
ranges. In the matrices derived in this study there are six different
types of substitution behaviors as we traverse from the outside of
the protein (low depth) to the interior (high depth). Scores increase
for 23 substitutions, decrease in 52 cases and remain the same in 10
substitutions. In addition to this there are 90 substitutions that
have the same score for 2 consecutive depth ranges and their first/
last value increase (25)/decrease (65). Some substitutions showed a
trend where their values in the middle depth range had a lower or
higher score as compared to scores in the other 2 ranges (35 out of
210, denoted as ∨ or ∧ in Fig. 6).

A closer look at the substitutions show that by and large the
score for substituting one polar (S,T,C,Y,N,Q,D,E,K,R,H) amino acid
either increases or remains the same from exposed to buried en-
vironments. This is possibly because in deeper environments
substituting one polar group by another would maintain charge-
charge interactions and leave no unpaired charges buried.
Cysteine mutations buck this trend and are generally less favorable
to mutate in deeper environments. Threonine and Serine are also
less likely to be substituted by any of the larger polar (charged or
uncharged) groups in deep environments. The trends for hydro-
phobic (G, A, V, L, I, M, W, F, P) to hydrophobic substitutions is in
some sense the opposite of what is seen in polar residues. The
deeper one goes into the protein the less likely it gets to substitute a
non-polar group by another. This is probably because difference
between the individual hydrophobic groups could contribute to
substantial differences in hydrophobic packing. The trends for
substituting non-polar groups by polar groups (or vice versa) get
more unlikely in deeper environments. Again, there are exceptions
to this - Serine, Threonine and Cysteine aremore amenable to being
substituted by small amino acids such as Alanine and Glycine with
increasing depth. An unusual exception is the increased likelihood
of substituting Tryptophan by Glutamine that gets less unfavorable
ino acid substitution matrices and their use in predicting deleterious
x.doi.org/10.1016/j.pbiomolbio.2017.02.004



Table 1
Residue substitutions from polar to non-polar, polar to polar and non-polar to non-polar and the proportions that have depth difference of greater than 1 Å and 1.5 Å.

Type of substitution Substitutions with depth difference >1 Å (%) Substitutions with depth difference >1.5 Å (%)

Non-polar to non-polar 24 13
Polar to non-polar 19 10
Polar to polar 11 5

Table 2
Frequency of residues having a score difference of 0, ±1, ±2 or > ±2 between the
matrices for exposed and intermediate residues, intermediate and buried residues
and exposed and buried residues.

Score difference 0 ±1 ±2 > ±2

Exposed-Intermediate 62 88 44 16
Intermediate-Buried 48 86 42 34
Exposed-Buried 25 64 55 66
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in the hydrophobic core.
The substitutions of E-H, M-Q, H-P, R-S, A-T, P-S, P-Q, C-R, C-T, A-

P AND D-K that are disfavored (negative score) in the protein
exterior become favored (positive score) in the hydrophobic core.
The substitutions F-H, F-I, I-Y, F-V, M-V, I-M and L-Ywhile favored in
the exterior become disfavored in the interior. In addition to these
extreme cases, there are several cases of neutral mutations
becoming less or more favored in different environments and vice
versa. Several of the anomalous substitution behaviors could be
explained away by sparse observations. Cysteine, Methionine and
Tryptophan, for instance, have low abundances and hence the
computation of the observed by expected substitution likelihood
ratios could sometimes be erroneous. The matrix as a whole, we
believe, is largely reflective of the real substitution rates between
Fig. 6. Trends in substitution scores as noticed from the three depth dependent matrices. Su
value with increasing depth are coloured orange. Substitutions that have a constant value ac
plateau and decrease and then plateau are coloured pink and yellow respectively. Substitut
increase or increase and then decrease respectively.
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amino acids residues.
An important trend that we have not explicitly considered here

is the difference in substitution rates between Cysteine (free thiol)
and Cystine (disulphide bridged). In the ~3700 pairwise structure-
structure alignments we have used for constructing the matrices
we have very few Cystine substitutions (on average 25 sub-
stitutions of Cystine to other amino acids) and in some cases sub-
stitutions are not observed at all. For this reason, the current
matrices have not differentiated between Cysteine and Cystine.

3.4. Application of the matrix to detect deleterious single point
mutations

We used saturation mutagenesis data from two proteins, T4
Lysozyme and CcdB, to train and test a prediction schema for
identifying destabilizing point mutations. The experimental data
for both proteins described the mutagenesis data in terms of in-
tensity of phenotype of the mutations. In the case of T4 Lysozyme
the mutational sensitivity was scored on a scale of 2e5 while the
range was 2e9 in the case of CcdB. For the computations described
below we have taken sensitivity score of 2 to imply neutral (or
native like) mutations and all other scores to imply destabilizing
mutations for both proteins. The datasets hence consist of 1362
(69%) and 1258 (82%) neutral mutations and 604 (31%) and 276
bstitutions coloured purple increase in value as depth increase. Those that decrease in
ross all the depth environments are coloured grey. Substitutions that increase and then
ions that are coloured light and dark green are those whose values decrease and then

ino acid substitution matrices and their use in predicting deleterious
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(18%) of destabilizing mutations in T4 Lysozyme and CcdB respec-
tively. Our simplistic method consisted of finding threshold values
in the depth substitution matrices using the training set data that
would best distinguish between neutral and destabilizing muta-
tions. The thresholds were found by a grid search that varied the
threshold value in the range �3 to �0.25 in steps of 0.25 over all
three matrices. The optimal threshold values (�3, �0.25 and �0.25
for the <5 Å, 5e8 Å and >8 Å depth matrices respectively) were
then applied to evaluate the efficacy of the method over the testing
set data. The accuracy of our binary classification method, and
those of other methods compared to ours, was measured in terms
of Sensitivity, Specificity, Precision, Accuracy, f1 and MCC(Mat-
thews, 1975) (Weaver and Matthews, 1987).

Our depth dependent substitution matrix (FADHM)method was
compared to other popular methods including Automute (Masso
and Vaisman, 2010), DUET (Pires et al., 2014b), I-mutant
(Capriotti et al., 2005), SuSPect (Yates et al., 2014), msCSM (Topham
et al., 1997) and SDM(Worth et al., 2011) which predict if mutations
are destabilizing (Table 3). Our precision values (60% and 44% for T4
lysozyme and CcdB respectively) and specificity values (85% and
78% for T4 lysozyme and CcdB respectively) were either the highest
or comparable to that of the other methods. Consistently, in both
the training and testing sets FADHM has the best accuracy (75% and
78%), f1 (0.55 and 0.57) and MCC values (0.38 and 0.48). The next
best methods for theT4 lysozyme and CcdB datasets have MCC
values of 0.30 (I-mutant) and 0.40 (DUET) respectively. Predictions
of destabilizing mutations by our simple method outperform other
sophisticated algorithms.

To check the robustness of our results we repeated the accuracy
computations 10 times for both the training and testing sets, this
time considering only a randomly selected 40% subset of the data.
These tests showed that the average MCC value for T4 Lysozyme
and CcdB were 0.39 with a standard deviation of 0.03 and 0.48 with
a standard deviation of 0.02 respectively.

4. Discussion

In earlier studies we had established the utility of the residue
depth measure to concisely describe local environment. The depth
measure has been successfully used for diverse applications
including, but not exhaustive, finding small molecule binding sites
on proteins, predicting what single point mutations would yield
temperature sensitive mutations and estimating the pKas of
ionizable amino acids. In this study we have used the depth
Table 3
Prediction performance comparison of different prediction techniques on (a) training set(
indicated in bold. * FADHM is Amino acid DeptH substitution Matrices.

Technique Sensitivity (%) Specificity (%) P

a)

I-mutant 56 75 5
SuSPect 75 53 4
Automute 70 54 4
mCSM 60 70 2
SDM 58 73 2
DUET 61 70 2
FADHM* 51 85 6

b)

I-mutant 64 78 4
SuSPect 99 21 2
Automute 76 49 3
mCSM 68 76 4
SDM 54 81 4
DUET 67 78 4
FADHM 80 78 4
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measure in conjunction with the knowledge that the relative
abundances of different amino acids change with protein envi-
ronments. This suggests that the substitution rates of amino acids
would also be different at different depths. The 3 depth dependent
substitution matrices were hence created.

We arbitrarily chose to create a set of threematrices to represent
the substitutions in expose, intermediate and buried environments.
The depth values (5 Å and 8 Å) that demarcated the boundaries
between these 3 classes were obtained by attempting to maximize
the differences between the matrices. The resulting matrices are
quite different from one another and show the difference in the
substitutions likelihoods in different environments. We observed 6
different substitution trends in pairwise residue substitutions
across different environments. The patterns include substitutions
whose values remained unchanged, increased or decreased
monotonically, increased/decreased and then plateaued, increase
and then decreased or vice versa. Only 10 of the 210 substitutions
remained unchanged across all three environments. The matrices
show many expected trends such as how replacing a hydrophobic
residue with a polar one in the buried environments is generally
unfavourable. There were many surprising substitutions trends
where the intermediate region was the most favoured in compar-
ison to buried and exposed environments. Some of these trends
could be artifacts of low abundance of residues such as Methionine,
Cysteine and Tryptophan. The other such trends indicate that the
matrices were able to capture some of the nuances of residue
preferences and substitutions across different environments.

We tested the matrices for their ability to detect mutations that
lead to protein instability. Saturation mutagenesis data from T4
Lysozyme and CcdB were used as the training and testing sets
respectively. Mutations/substitutions were considered as destabi-
lizing if the substitution score (native to mutant) was less
than �3.00, �0.25 and �0.25 in exposed, intermediate and buried
environments respectively. Our somewhat simplistic approach
outperformed other popular methods, some of which use machine
learning rigorously. Of the 276 deleterious mutation in the CcdB
test set, we accurately identified 220 while the next best method
identified only ~160. Our method, and the others, produce a large
number of false positives and hence the somewhat modest overall
performance (MCC of 0.38 on the training set and 0.48 on the
testing set). In comparison to the others, our method has low
sensitivity, is comparable in terms of specificity and precision but
clearly outperforms in accuracy, f1 and MCC values.

We believe that these depth dependent substitution matrices
T4 lysozyme) (b) testing set(CcdB). Maximum performance of each value measure is

recision (%) Accuracy (%) F1 MCC

0 69 0.53 0.30
1 60 0.53 0.26
1 59 0.52 0.23
6 68 0.37 0.22
8 71 0.38 0.24
7 69 0.38 0.24
0 75 0.55 0.38

4 73 0.52 0.36
2 35 0.36 0.21
0 55 0.43 0.21
4 74 0.54 0.39
5 75 0.49 0.33
6 76 0.54 0.40
4 78 0.57 0.48

ino acid substitution matrices and their use in predicting deleterious
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are important in describing the internal environments of proteins.
Further developments of these potentials could include the crea-
tion of asymmetric substitution matrices as the relative abun-
dances of different amino acids in the different environments vary.
These matrices should be able to improve the accuracy in aligning
distantly related homologues with one another. This is the first of
what we expect to be a series of studies to learn from substitution
likelihoods in different protein environments.
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