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It has been twenty years since the first rationally designed small molecule drug was introduced into the
market. Since then, we have progressed from designing small molecules to designing biotherapeutics.
This class of therapeutics includes designed proteins, peptides and nucleic acids that could more effec-
tively combat drug resistance and even act in cases where the disease is caused because of a molecular
deficiency. Computational methods are crucial in this design exercise and this review discusses the var-
ious elements of designing biotherapeutic proteins and peptides. Many of the techniques discussed here,
such as the deterministic and stochastic design methods, are generally used in protein design. We have
devoted special attention to the design of antibodies and vaccines. In addition to the methods for design-
ing these molecules, we have included a comprehensive list of all biotherapeutics approved for clinical
use. Also included is an overview of methods that predict the binding affinity, cell penetration ability,
half-life, solubility, immunogenicity and toxicity of the designed therapeutics. Biotherapeutics are only
going to grow in clinical importance and are set to herald a new generation of disease management
and cure.
� 2017 The Authors. Published by Elsevier Inc. This is an open access article under theCCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Healing illnesses and diseases, caused by malfunctioning organs
or by pathogens, with therapeutic agents is as old as recorded his-
tory. The ancient cultures practiced what we now categorize as tra-
ditional medicine. The therapeutic agents were typically herbal or
animal extracts. From there we progressed to synthesizing new
therapeutic compounds, such as chloral hydrate [1]. This acted
as a great fillip to the development of the pharmaceutical industry.
A large number of compounds were screened for the efficacy in
combating diseased conditions by a procedure of trial and error.
The screening of large libraries of compounds proved expensive
and cumbersome. Moreover, these small molecule drugs had many
off-target effects leading to adverse drug reactions [2–4].

In all of these therapies, the administered drugs helped cure the
symptoms and/or the disease without prior knowledge of the
mechanism of drug action. Given the advances in structure deter-
mination methods, the first rationally designed drug, dorzolamide,
was introduced into the market about 20 years ago [5]. In rational
design, treatments are devised by first getting insights into the
molecules and molecular pathways involved in the diseased condi-
tion. A compound or molecule is then designed/synthesized con-
sidering the molecule against which it is targeted. This ensures
that the therapeutic agent acts specifically on a target of choice.
All drugs that are rationally designed today follow the protocol
of first finding an appropriate bio-molecular target and then creat-
ing a target-specific inhibitor.

Small molecule inhibitors make for attractive drugs – many are
easily synthesized, orally administered and could act on intracellu-
lar or extracellular targets [6–8]. But many of these small mole-
cules do not have a high (enough) specificity and still result in
side effects [9]. Also, certain diseases caused due to deficiency of
a protein or enzyme, such as hemophilia, could not be managed
by small molecule drugs [10]. To overcome these challenges, the
pharmaceutical industry turned to designing biological therapeu-
tics or biotherapeutics. Biological therapeutics include proteins,
peptides and nucleic acids. Since nature has optimized these mole-
cules to demonstrate specificity in target recognition within the
crowded cell, they override the shortcomings of small molecules.
The interest of the pharmaceutical industry on biotherapeutics
was also due to the sharp rise in antibiotic-resistant strains of
infectious organisms [11,12]. This rise is a result of indiscriminate
antibiotic use. The advantage of using biotherapeutics in this sce-
nario is that they have a large binding site on the target protein
of the pathogen. This large surface that is recognized would still
allow pathogens to mutate and become resistant to the drug, but
the timescale would be much longer than for small molecule drugs
[13]. However, biotherapeutics have their own set of challenges
such as production costs, invocation of an immune response,
reduced half-lives and limited modes of administration [14].
Despite these difficulties, biotherapeutics present effective strate-
gies to surpass the disadvantages of small molecule drugs.

The focus of this review is to discuss the methods involved in
designing protein and peptide-based biotherapeutics. Nucleic acid
biotherapeutics have been discussed in detail elsewhere [15]. The
first step of the design process, as with all rational design proce-
dures, is to identify a suitable target. This selection is dependent
on factors such as the similarity of the target with other proteins
in humans (or other recipient organisms), its cellular location
and its precise role in the progression of the disease etc. [16]. In this
review, we assume that the target has already been identified and
we restrict our discussion to the methods employed in designing
and developing biotherapeutic agents, with special emphasis on
antibody and vaccine design. The methods involved in the design
of proteins and peptides are similar and will be discussed in Sec-
tion 2. Methods specific to designing antibodies and vaccines are
discussed in Sections 3 and 4 respectively (Fig. 1). The in silico effi-
cacy of the designed biotherapeutics and the methods for their
improvement are described in Section 5, followed by the chal-
lenges in the field and the way forward.
2. Computational methods for designing therapeutic proteins
and peptides

In this section, we discuss the principles of designing biothera-
peutic proteins and peptides. We define peptides as polymers of 40
amino acids or less. Most of the methods are developed for design-
ing proteins, as they are more complex, but these methods are also
applicable for designing peptides, unless mentioned otherwise. The
aim of these design exercises is to create/engineer a new molecule
that would intervene in the diseased condition by binding an
appropriate target or by affecting a chemical pathway. The design
of proteins/peptides refers to changing the arrangement of amino
acids to either create an entirely novel protein/peptide (designing
sequence and 3D structure) or to fit a pre-defined structural tem-
plate (designing the sequence alone). The approach most com-
monly adopted for rational design is either the local modification
of a pre-existing protein or the fitting of an amino acid sequence
onto a given protein fold. The use of templates circumvents the dif-
ficulty of predicting the fold of an unknown sequence. Since the
fold is unchanged, the backbone atoms are directly placed on this
framework. The side chains that would best stabilize the structure
are then added to the backbone to create a functional protein
[17,18].

As mentioned earlier, we assume that the target is already iden-
tified and has a known three-dimensional structure. Therapeutic
proteins against a known target can be designed by two
approaches – (a) By identifying proteins that have a fold comple-
mentary to the target and modifying/changing some residues to
facilitate binding, or (b) By searching/designing a sequence that
would adopt the complementary fold and exhibit binding capabil-
ities. In the following section, we discuss methods relevant to each
of these approaches.
2.1. Template based design methods

Here we discuss methods that use existing structural templates
for the design of therapeutic proteins. The overall approach can be
summarized in two steps; (1) searching for a suitable template,
and (2) modifying the template’s interface to improve binding with
the target. Templates are required to possess a fold geometrically
complementary to the target structure. Once a template is chosen,
the amino acid arrangement at the interface of the template is
modified to have preferential contacts between the target and
the template. When the structures of target binding proteins are
available, the binding residues could be grafted from the target
binding proteins onto the new template. The grafted region needs



Fig. 1. An overview of the methods discussed in this review. A cellular process that leads to a disease condition is represented schematically as a set of dots and arrows
connecting them. One of the molecules in this process/pathway serves as a therapeutic target. In this review, we discuss different methods of the three broad categories of
designed biotherapeutics including proteins/peptides, antibodies, and vaccines.
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to be stabilized by optimizing side chain torsion angles and by
energy minimization using tools such as RosettaDesign [19,20]
that improve the hydrogen bonding network and van der Waals
interactions. Additional mutations for further stabilization could
be introduced around the grafted regions. Care needs to be taken
that there is minimum scaffold perturbation while modifying these
amino acids. Existing protein structures are used as scaffolds for
protein design as they are robust to residue substitutions [21,22].

Most methods such as GRAFTER [23], FITSITE [24], ProdaMatch
[25] and ScaffoldSelection [22] require geometric restraints in the
form of coordinates where representative atoms from templates
could be placed. Representative atoms are backbone atoms, usually
Ca, or both Ca and Cb. Once the spatial restraints are set, templates
that satisfy these restraints are searched from a library of non-
redundant protein structures. CLICK [26–28] is an example of a
method that can efficiently perform topology independent struc-
tural comparisons between a template library and the geometric
descriptor. Tools such as AutoMatch [29] also account for backbone
flexibility while searching for templates.

Once a suitable template is found, the amino acid side chains at
its interface need to be modified to improve binding affinity. Side
chain modifications are made by evaluating various factors that
determine binding affinity and structural stability. These factors
include geometric and chemical complementarity, avoiding steric
hindrance and an increase in bound surface area of the target-
template interface [22]. Tools such as ORBIT [30] use a force field
based evaluation method to guide side chain modifications that
enable target template binding. RosettaMatch [31] uses a geomet-
ric hashing technique for optimal placement of side chains. If the
binding requires the presence of cofactors, such as metals, methods
such as OptGraft [32] and MetalSearch [33] could be used to design
metal binding sites on proteins.

Designed protein structures can be refined using geometric
algorithms that optimize side chain positioning. These algorithms
include Voronoi (and Delaunay tessellations) partitioning based
algorithms along with alpha and beta shape approximations
[34,35]. They use Voronoi diagrams for a set of N points (seeds)
to partition the space into N regions such that each region occupies
one seed. Algorithms such as BetaSCP pack the side chains such
that they minimize the intersection volume between atoms calcu-
lated through Voronoi diagrams [36]. This algorithm attempts to
reduce the repulsive forces and increase the attractive forces
between atoms to obtain a lower energy structure. Voronoi based
algorithms have already been shown to be effective in modeling
ligand/peptide conformations at their binding sites [37–40] and
could be further explored for efficient side chain positioning at
the designed binding interface.

The above-mentioned methods have been shown to be success-
ful in a variety of protein design problems. Mayo and co-workers
have used thioredoxin as the scaffold protein and modified its
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active site to catalyze the reaction that converts p-nitrophenol
acetate to p-nitrophenol [41]. Baker and co-workers have designed
enzymes that catalyze the Kemp elimination reaction [42], retro-
aldol reaction [43] and Diels-Alder reaction [44]. Liu et al. have
designed a non-natural interaction of a PH domain protein with
erythropoietin receptor by grafting interface residues from ery-
thropoietin onto the non-homologous PH domain scaffold [45].
Fleishman et al. have designed two proteins that bind to influenza
hemagglutinin with low nanomolar affinity [46]. Although not all
of these designed proteins are used as therapeutics, the design
principles remain the same and can be directly applied to the
design of protein therapeutics.

2.2. Designing novel sequences

The previous section dealt with template based protein design
where we inherit the sequence of the protein scaffold and make
minor changes to improve binding affinity. Here, we discuss meth-
ods that predict a completely novel sequence that would be
accommodated on a desired fold. Using deterministic or stochastic
sequence search methods, a novel sequence is predicted that
would fold into a desired conformation obtained from an existing
protein scaffold. These methods search the sequence space to
obtain a sequence that would represent the global minimum
energy conformation. These methods are essentially used for solv-
ing the inverse protein folding problem.

The sequence of the protein is chosen such that it satisfies the
geometric and energetic constraints imposed by the desired fold.
Constraints usually include various parameters involved in intra-
molecular interactions, such as hydrogen bonding, van der Waals
interactions, hydrophobic interactions, polar and electrostatic
interactions etc. Typically, a scoring function is employed that
takes into account various energetic contributions of the above-
mentioned parameters. Sequence search methods sample multiple
sequences and calculate their energies to find the one with the
minimum energy. This problem could be tackled deterministically
or stochastically. Deterministic methods search the complete
sequence space to arrive at a sequence that folds into the global
minimum energy conformation whereas stochastic methods
search the sequence space heuristically.
2.2.1. Deterministic search methods
Deterministic search methods attempt to sample the complete

sequence space and then converge onto a solution. This solution
is the sequence that would accurately adopt the template back-
bone conformation with the lowest energy. Here, we examine
two of the most commonly used deterministic methods namely
dead-end elimination and self-consistent mean field.

2.2.1.1. Dead-End elimination. Dead-End Elimination (DEE) is an
exhaustive search algorithm that identifies and eliminates
sequence-rotameric states that are not part of the global minimum
energy conformation [47]. The algorithm uses an energy function
of two-body interactions to iteratively eliminate amino acids or
rotameric states until no further amino acids or rotamers could
be eliminated.

DEE compares two amino acid rotamers and eliminates the one
with higher interaction energy. Interaction energies are calculated
for every rotamer of the test amino acid with all the other rotamers
of every other amino acid. At every iteration, the following condi-
tion is tested for any two rotamers ia and ib at amino acid position
i:

EðiaÞ þ
XN
j – i

min
x

Eðia; jxÞ > EðibÞ þ
XN
j – i

max
x

Eðib; jxÞ ðiÞ
where EðiaÞ is the backbone-side chain interaction energy of ia, and
Eðia; jxÞ is the side chain-side chain interaction energy with rotamers
at all other amino acid positions jx. If the condition is true, then ia is
incompatible with the global minimum energy conformation and is
eliminated. This condition is iteratively tested for all amino acid
positions and their rotamers until it no longer holds true [47,48].

DEE has been successfully implemented in the design of a novel
28 amino acid peptide that folds into a bba motif based on a zinc
finger template [49]. It has also been implemented in a partial
design procedure where a Streptococcal protein Gb1 domain was
designed to have enhanced thermostability with a melting temper-
ature above 100 �C [50]. Mayo and co-workers have developed an
automated protein design pipeline that uses DEE and Monte Carlo
methods to design the sequence of a protein that fits a desired fold
[30].

With increasing sequence length, the combinatorial complexity
of DEE increases exponentially. This renders DEE practically
intractable for designing sequences of 30 amino acids or larger
[51]. DEE is being continuously improved to decrease the combina-
torial complexity. Improvements include the use of rotamer clus-
ters for comparisons and revisions in the elimination criteria by
incorporating Monte Carlo calculations to eliminate high energy
rotameric states [52]. Extended DEE has been developed to account
for multi-state protein structures to obtain multiple low-energy
states from discrete states [53]. Another method for multi-state
protein design is the type-dependent DEE [54], where energy com-
parisons are only made between different rotameric states of the
same amino acid. Flexible backbone DEE [55] allows backbone
flexibility by providing upper and lower bounds to rotameric inter-
action energies by specifying a range of backbone dihedral angles
where the amino acid rotamer can be placed. These advances in
DEE are mostly to address issues related to scaling-up to larger sys-
tems [51].
2.2.1.2. Self-consistent mean field. The self-consistent mean field
method for side-chain modeling of proteins uses a global confor-
mational matrix ðCMÞ that contains the probabilities for every rota-
meric state at each amino acid position on the protein. CM is a
matrix of dimension N � R where N is the total number of amino
acids in the protein and R is the total number of rotamers. Any ele-
ment CMij is defined as the probability of rotamer j occurring at the
ith position of the protein [56]. The method populates CM by
assigning probabilities to all rotameric states of an amino acid
position based on its interaction energy with all other amino acids
in the protein. The final sequence is derived by choosing the amino
acids with the highest probabilities at each position.

Initially, the CM has equal probabilities for all rotamers. This is
updated by calculating the average local energy generated by the
interaction of a side-chain rotamer j with all other neighboring
side-chains (mean field). This is repeated multiple times for every
position i until convergence. The energy function used for calculat-
ing the average local energy of a side-chain rotamer at position x is:

exðax; rðaxÞÞ ¼ e0xðax; rðaxÞÞ
þ
X
y;ay

X
rðayÞ

xyðay; rðayÞÞcxyðax; rðaxÞ;ay; rðayÞÞ ðiiÞ

where, ax and rðaxÞ are the amino acid identity and its rotameric
conformation at position x, e0x ðax; rðaxÞÞ is the interaction energy
of the side-chain rotamer with the backbone,xyðay; rðayÞÞ is the site
specific probability of amino acids and their side-chain conforma-
tions at the position y, and cxyðax; rðaxÞ;ay; rðayÞÞ is the two-body
interaction energy of side-chains ax and ay. At the end of the com-
putation the CM is populated by updated probabilities for every
side-chain rotamer at each amino acid position of the protein. The
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predicted side-chain conformations are the ones with highest prob-
abilities at each amino acid position of the protein [48,56].

Koehl and Delarue modeled the side chains of a 325 amino acid
long protein rhizopuspepsin starting from a given backbone con-
formation. They were able to correctly predict 81% of all v1 dihe-
drals and 73% of v1 and v2 dihedrals [56]. This method has been
reported to have a higher accuracy in predicting side chain confor-
mations at the hydrophobic core as compared to the protein’s sur-
face [51,56]. Since the time required for convergence of CM
increases linearly with increase in sequence size, the self-
consistent mean field is faster in comparison to DEE, but is less
accurate [51]. Currently, researchers are combining DEE with
self-consistent mean field approaches to improve on both speed
and accuracy [51].

2.2.2. Stochastic search methods
The deterministic methods, while accurate when designing

small proteins/peptides have practical limitations with increasing
sequence size. For large proteins, finding an optimal solution relies
on the use of heuristic or stochastic approaches. The stochastic
methods most commonly used for protein or peptide design
include Monte Carlo sampling and Genetic Algorithm.

2.2.2.1. Monte Carlo sampling. The Monte Carlo method samples
conformational energy from a Boltzmann distribution [57]. The
goal is to sample sequence variations to identify the lowest energy
sequence that can adopt a desired fold. The lowest energy
sequence is searched by making random moves and accepting or
rejecting the move based on the energy of the new state. A move
is defined as a change from the previous state of the protein that
could either be a change in the amino acid sequence or a change
in the rotameric state of an amino acid. The move is always
accepted if the energy of the new state is less than that of the pre-
vious state, otherwise it is accepted with a probability Paccept

(Metropolis criterion) that is expressed as:

Paccept ¼ minð1; e�bDEÞ; b ¼ 1=kT ðiiiÞ
Here, DE refers to the change in energy as a result of the move, b
represents the inverse of temperature, k is the Boltzmann constant
and T is the temperature. Various modifications to this method exist
such as Simulated Annealing, Simulated Tempering, Biased Monte
Carlo, and Replica Exchange Monte Carlo. These modifications are
explained below:

1. Simulated Annealing: In this method, the system is initially sim-
ulated at a very high temperature and is gradually cooled [58].
The moves that reduce the energy of the system are accepted,
and those that increase the energy are accepted with the prob-
ability of their occurrence (Eq. (iii)). This probability depends on
the temperature and the energy difference between the two
states. This method, at higher temperatures, allows the system
to overcome local minima. As the temperature approaches 0,
moves that encourage downhill movement on the energy land-
scape are preferred. Thus, with adequate sampling, it results in
finding the global minima.

2. Simulated Tempering: Since the temperature jumps are random,
every run of simulated annealing has a probability of ending at
a different minimum and does not guarantee the achievement
of global minima when run at finite temperature ranges. A
modified version of Monte Carlo, called simulated tempering,
was introduced to include discrete temperature ranges
[59,60]. This method has a modified probability of acceptance
of a move. The simulation starts at an initial temperature. Clas-
sical Monte Carlo protocol is followed that is dependent on the
energy of the resultant protein and the Metropolis criterion for
acceptance of moves. Change in temperature to a higher or a
lower value is also subject to the acceptance probability and a
separate function incorporating both the energy and the tem-
perature contribution is created. This enables exploration of
the energy space as well as temperature space, hence, resulting
in the convergence of the moves into a global minimum.

3. Biased Monte Carlo: This method is biased for the selection of
the sequence [61]. The amino acids are arranged in a two-
dimensional lattice such that each amino acid occupies one
grid. Thus, the total number of grids corresponds to the length
of the protein. A fixed number of combinations of these grids
are made. The energy of the amino acid at each position
depends on its neighbors and whether the amino acid is buried
or exposed. The Monte Carlo protocol is followed, with the
exception that the choice of amino acid for replacement
depends on a probability function that favors replacements
having better energies. Thus, the moves have higher chances
of getting accepted. The acceptance probability is calculated
from the ratio of Rosenbluth weights after ðWa0 Þ and before
ðWaÞ accepting the move. Details of the formulation of the prob-
ability distribution and weights are explained in detail in previ-
ous studies [61,62].
Paccept ¼ min 1;
Wa0

Wa

� �
ðivÞ

4. Replica Exchange Monte Carlo: Replica Exchange Monte Carlo
[63] is another modification of the classic Monte Carlo that is
efficient in uneven energy landscapes. The Monte Carlo simula-
tions are simultaneously carried out at different temperatures.
Since, the moves are random, these simulations or ‘‘replicas”
would have different conformations. At specific intervals of
time, the conformations from two different systems at different
temperatures are swapped. Then the probability of acceptance
of the swapping move depends upon the temperature of the
two systems and the difference between the energies of the
two states represented by:

Paccept ¼ minð1; eðb1b2ÞðDE1�DE2ÞÞ ðvÞ

Here, b1 and b2 represent inverse temperatures and DE1 and DE2

are energies at temperatures t1 and t2 respectively.
The most commonly implemented Mote Carlo based protein

design methods are RosettaDesign [20], PROFASI [64], PHAISTOS
[65], CHARMM [66], MCPRO [67], EvoDesign [68] and eVolver
[69]. RosettaDesign uses Monte Carlo with simulated annealing
to find a sequence that would fit the desired fold. A modification
of RosettaDesign that allows change in the backbone conformation
is RosettaBackrub [70]. Even though RosettaBackrub was not
specifically built for designing proteins, its allowance of backbone
flexibility could be incorporated into RosettaDesign. eVolver uses
simulated annealing with a structure based sequence profile to
search the sequence space. PROFASI is another Monte Carlo based
simulation software that allows backbone flexibility, like the
Rosetta package, but favors local backbone deformations. It allows
users to choose between simulated annealing and simulated tem-
pering. The energy function is a linear combination of the hydrogen
bonds formed by backbone atoms, hydrophobic interactions
between non-polar groups, repulsion between atoms and electro-
static attraction between sequential neighbors. PHAISTOS is
another method that utilizes PROFASI’s forcefield in its Monte
Carlo program. It differs from PROFASI in having an additional
energy function of OPLS-AA/L and a larger move set. CHARMM
implements hybrid Monte Carlo that adopts its acceptance criteria
from a change in total energy and not a change in potential energy.
MCPRO uses simulated annealing like the other methods discussed
and is used for analyzing protein-ligand interactions. EvoDesign
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uses classical Monte Carlo with a limited sequence search space. It
creates an evolutionary profile of sequences based on the selected
scaffold. This restricts the sequence search space for Monte Carlo. A
study by Dantas et al. [71] has shown concurrence between
designed proteins and their experimentally determined structures,
illustrating the usefulness of such methods.
Fig. 2. Schematic representation of the structure of an antibody. Antibodies consist
of a shorter light chain (peach) and a longer heavy chain (teal). The antibody
structure is divided into its constant region (FC) and its antigen binding fragment
(Fab). Fab harbors a variable region (FV) that is responsible for antigen binding. FV is
composed of light chain variable region (VL) and a heavy chain variable region (VH).
The complementarity determining region (CDR) on VH and VL dictate antigen
binding specificity and affinity. CDR is composed of six hypervariable loops, three
from the light chain (L1, L2, L3) and three from the heavy chain (H1, H2, H3). The
constant regions of the heavy chains are labelled as CH1, CH2 and CH3 whereas the
constant region of the light chain as CL.
2.2.2.2. Genetic algorithm. Genetic algorithm is another stochastic
search method, which derives its principle from Darwin’s theory
of ‘‘Survival of the Fittest”. Its biological basis is evident in the steps
involved in its operation – reproduction, mutation, cross-over and
selection [72]. Its application is suggested when the search space is
large, replete with local minima or maxima, and there is lack of
knowledge about the route that needs to be followed to obtain
the final structure. Initially, a set of random seed sequences are
chosen either based on a priori knowledge or randomly. These
sequences are then subjected to mutation simultaneously. A muta-
tion involves changing an amino acid to one of the other 19 amino
acids. The initial sequence is the parent and the mutated one is its
offspring that forms the next generation. Another change that can
occur is a cross-over, which refers to swapping of segments of one
sequence with another. The resulting chimera is now a part of the
next generation. After each generation, the ‘‘fitness” of the
sequence is analyzed. The fitness of a sequence is evaluated by dif-
ferent measures depending upon the desired application. For
designing stable folds of protein or peptide, the fitness score is
obtained from the pairwise-energy potentials as well as solvation
effects. When the protein or peptide is being designed to bind to
a specific target, the fitness score is determined by the binding
affinity of the three-dimensional structure of the sequence with
the target. Sequences that form low energy structures are consid-
ered to have better fitness. Selection of the sequences that will
be carried forward to the next generation can be done using vari-
ous algorithms. The first algorithm proposed was the proportional
or roulette wheel algorithm, where the proportion of a sequence in
the population is directly proportional to its relative fitness com-
pared to other sequences. The best percent selection algorithm
conserves sequences having the best fitness scores. This is done
by choosing a fixed percentage of sequences with the top fitness
scores that are passed onto the next generation without any muta-
tion or cross over. Other algorithms include linear rank selection,
random selection, binary tournament selection, Q-tournament
selection and universal sampling (discussed in detail in [73]). This
iterative process of forming new sequences is carried out either for
a fixed number of times (usually 100 generations) or until the con-
vergence of different sequences into one. As this method involves
parallel processing of many seed sequences, the number of compu-
tations and time required to reach the optimum solution is multi-
plied considerably. But as individual systems are independent of
the others, the computation could be parallelized. Two webservers
that use genetic algorithms for protein design are GAPSSIF [74] and
EGAD [75].
3. Antibody design

The previous sections dealt with protein design in general.
However, antibodies form a special case of proteins and are one
of the most important classes of biotherapeutics today [76,77]. In
recent years, the largest fraction of approved biological therapeu-
tics has been monoclonal antibodies. About 27% of all the approved
biological therapeutics between the years 2010 and 2014 were
antibodies, with worldwide sales of $75 billion and with a pro-
jected rise to $125 billion dollars by 2020. As of January 2017,
the FDA has approved 68 therapeutic antibodies with 10 of them
being approved in 2016 alone [77–79].
The current method to develop antibodies against a specific
antigen is to screen a large library of antibodies for potential bin-
ders. Molecules that bind to the specific antigen are then mutated
to generate a new library of antibodies that are in turn screened to
check for an increase in binding affinity. This iterative process
while efficient at designing antibodies with higher binding affini-
ties is both time consuming and expensive [80,81]. Clearly, better
strategies are needed to get high affinity antibodies. To better
appreciate these newer methods, we first preview the peculiarities
of antibody 3D structure.

Antibodies are made of two types of chains namely the light
chain and the heavy chain, each of which has multiple domains.
The structure of an antibody can be divided broadly into two
domains the constant domain and the antigen binding domain.
Antigen binding is mediated by six hypervariable loops that form
the Complementarity Determining Region (CDR) present on the
antigen binding domain. A description of the structural character-
istics of antibodies is shown in Fig. 2.

Antibody design is divided into modeling the six hypervariable
loops in the CDR and the rest of the antibody known as the frame-
work region. Since the framework shares substantial similarity
with other antibodies, it is easier to model, whereas the CDR has
hypervariable loops and require additional constraints to be mod-
eled accurately. The CDR-H3 loop being the most variable, both in
length and sequence, requires a different approach for modeling as
compared to the other CDR loops. The CDR-H3 is particularly
important in antigen binding, and therefore it is crucial to model
it with significant accuracy [82].

Prediction of the antibody structure can be briefly summarized
into annotating the sequence into structurally equivalent residues
of the framework and CDR, modeling the framework, modeling the
CDR loops and predicting or optimizing the VH-VL orientation. In
this section, we briefly summarize the methods and the tools
(Table 1) required for each step of rational antibody design. For a
comprehensive overview, we recommend the review by Krawczyk
et al. [82].



Table 1
List of all tools used for different stages of antibody design along with their modes of
access.

Tool Name Type Access

Antibody Structure Prediction
ABodyBuilder Web server Open
Accelrys Discovery Studio Standalone Proprietary
Kotai Antibody Builder Web server Open
LYRA (LYmphocyte Receptor Automated

modeling)
Web server Open

MOE (Molecular Operating Environment) Standalone Proprietary
PIGS (Prediction of ImmunoGlobulin

Structure)
Web server Open

Rosetta Antibody Web server Open
Schrodinger Biologics Suite Standalone Proprietary
SmrtMolAntibody Web server Proprietary

Antibody Sequence Annotation
Abnum Web server Open
ANARCI (Antigen receptor Numbering And

Receptor Classification)
Web server and
Standalone

Open

IMGT Domain Gap Align Web server Open
PyIgClassify (Python-based

Immunoglobulin Classification)
Web server Open

Template Search
IgBLAST Web server and

Standalone
Open

SAbDab Structural Antibody Database Database Open

Loop Prediction
FREAD Web server Open
H3Loopred Standalone Open
MODELLER Standalone Open
ModLoop Web server Open

VH-VL Orientation
ABangle Web server and

Standalone
Open

Antibody Humanization
TabHu (Tool for Antibody Humanization) Web server Open

Antibody Prediction Suite
SAbPred (Structural Antibody Prediction) Web server Open

Paratope Prediction
Antibody-i-Patch Web server and

Standalone
Open

Paratome Web server Open
ProABC Web server Open

Epitope Prediction
Conformational Epitope Database Database Open
EpiPred Web server Open
Immune Epitope Database and Analysis

Resource
Web server and
Database

Open

Antigen – Antibody Docking
ClusPro (Antibody mode) Web server Open
DockSorter Standalone Open
SnugDock Standalone Open
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The antibody sequence is initially annotated into its framework
and CDR segments using numbering schemes. Various numbering
schemes such as Kabat [83], Chothia [84], Enhanced Chothia [85],
IMGT [86], and AHo [87] have been used for these annotations.
Multiple online web servers are available that utilize one or more
of the methods mentioned above to number the antibody
sequence; Abnum [85] uses Kabat, Chothia, and Enhanced Chothia
schemes, DomainGapAlign [88,89] uses IMGT scheme, PyIgClassify
[90] uses AHo scheme, and ANARCI [91] uses all the five numbering
schemes. Once the sequence is annotated, the framework and the
CDR are modeled using approaches mentioned below.

3.1. Modeling the framework region

Modeling the framework is relatively easier as compared to the
CDR since they share a substantial similarity both in terms of
sequence and structure. Usually, using templates that are 80% or
higher in sequence identity in the framework regions, results in
an accurate model [82]. Using such templates, all participants of
the Antibody Modeling Assessment-II [92] were able to predict
the framework region with an average RMSD below 1 Å (for both
VL and VH frameworks). Tools such as IgBLAST [93] and SAbDab
template search [94] are used for searching templates to model
VH and VL framework regions. These template search methods dif-
fer from conventional methods in being able to delineate the
framework from the CDR and being able to utilize the search for
homologous framework sequences from antibody sequence data-
bases. Templates obtained using these methods can be utilized
by different modeling protocols.

3.2. Modeling CDR loops

Five of the six hypervariable loops (L1, L2, L3, H1 and H2) of the
CDR can be clustered into a limited number of structural conforma-
tions, known as canonical structures [84,95–97]. The conformation
of the loop can be decided by identifying a few key structure deter-
mining residues [98]. The other residues (not identified as key) do
not impact the conformation of the loop. Tools such as PyIgClassify
[90] look for the structure determining residues in a sequence and
compare it with the canonical clusters to determine the conforma-
tion of the loop. Another method to predict the non-CDR-H3 loops
is to treat these loops like any other loop modeling problem, with-
out the canonical classification [99]. Tools akin to FREAD [100] and
the MODELLER loop modeling protocol [101] can be used to deal
with the non-CDR-H3 loops like any other loop and predict their
structure.

Prediction of the CDR-H3 loop is relatively difficult as compared
to the other CDR loops owing to their high variability in both
length and sequence. The CDR-H3 loop lies at the center of the
antigen binding site and has a critical role in antigen recognition
due to which modeling of this loop with significant accuracy is cru-
cial for antibody engineering [82]. The structure of CDR-H3 loop
can be divided into the base region (proximal to framework) and
the b-harpin region (distal to framework). Although CDR-H3 loops
do not have canonical structures, they can be classified to some
degree based on subtypes of these two regions [95,102,103]. Resi-
due preference at few positions of the antibody sequence can help
guide the choice of CDR-H3 loop conformations, like the presence
or absence of asparagine at Chothia position 101 [102,103]. Both
template-based and ab initio methods have been utilized for mod-
eling the conformation of the CDR-H3 loop. Template-based meth-
ods such as PIGS [104] and FREAD [100] use sequence derived rules
for choosing the correct template. As with all other template based
structure determination methods, the accuracy of the CDR-H3 loop
depends on the choice of the template and loops cannot be pre-
dicted in the absence of a template. Ab initio methods like Kotai
Antibody Builder [105] and Rosetta Antibody [106,107] sample
multiple conformations to build loop decoys and score them using
their energy functions. Reliable prediction of the CDR-H3 loop
remains a hurdle in the rational design of antibodies.

3.3. Optimization of the VH-VL domain orientation

Amino acids on the antibody that are in direct contact with the
antigen are collectively termed as the paratope. The corresponding
interacting region on the antigen is termed the epitope. The orien-
tation of the VH-VL domain determines the extent to which the
paratope is accessible to the antigen. Sub-optimal orientation of
the VH-VL domains decrease the antigen binding affinity and may
also lead to a complete loss of antigen recognition; hence it is
important to optimize the orientation of these domains [108–
114]. There are multiple ways to determine the orientation of the
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VH-VL domains, the easiest of which is to mimic the orientation
from a structure with high sequence similarity. Sequence similarity
can be calculated by considering the complete variable region or
just the residues that are known to make contacts with the antigen.
Other methods include the use of energy functions to choose the
best orientation from a set of possible conformations or to opti-
mize the orientation during the prediction procedure iteratively
[106,115]. ABangle [116] uses an absolute measure of the domain
orientation; it measures two torsion angles, two twist angles, two
tilt angles and the distance between the domains. Some methods
use information from key residues to predict the orientation of
the VH-VL domains [117,118].
3.4. Predicting the antigen-antibody contact residues

In a natural immune response, the binding residues on the anti-
body are often mutated to increase the antigen binding affinity and
specificity in a process known as affinity maturation. If antigen-
antibody contact residues are known, one can computationally
mutate them to screen for residues, which increase the binding
affinity and specificity of the antibody. This process can be divided
into three steps; paratope prediction, epitope prediction, and
antigen-antibody docking.
3.4.1. Paratope prediction
On average, about 80% of the amino acids constituting the para-

tope are in the CDR, accounting for about a third of the number of
residues in this region [119]. Since most of the paratope occupies
the CDR, traditional methods for predicting CDRs, such as those
by Chothia, Kabat, and IMGT, are often regarded as tools for pre-
dicting antigen binding sites [82]. Tools such as Paratome [120]
use sequence and structure information to predict paratope resi-
dues both in the CDRs and outside of the traditionally defined
CDRs.

As only a third of the CDR residues participate in antigen bind-
ing, it is of importance to identify these residues precisely. This
reduces the number of residues that need to be mutated for affinity
maturation. Tools for such high-precision antigen binding residue
predictions are available, namely ProABC [121] and Antibody-i-
Patch [122]. Antibody-i-Patch provides an antigen-contact-
likelihood for all predicted residues. These likelihoods can be used
to decide what residues are to be chosen for mutagenesis.
3.4.2. Epitope prediction
In a search for immunogenic motifs on antigens, databases such

as the Conformational Epitope Database [123] and the Immune
Epitope Database [124] have been created that map the struc-
tural/sequential epitope motifs onto antigens. A majority of the
methods for epitope prediction rely on these databases to search
for immunogenic motifs on antigens [125]. These methods are
based on the assumption that antigens have certain motifs that
are inherently more immunogenic as compared to the rest of the
protein and do not require any information of the antibody. It
has been reported that immunogenic motifs are indistinguishable
from the rest of the protein which suggests that any part of the
protein can be a part of an epitope [126]. Methods that incorporate
antibody information for epitope prediction have been shown to
outperform methods that do not [127]. EpiPred [128] is an epitope
prediction tool that analyzes the geometric complementarity of the
antigen-antibody interface along with preferential interface con-
tact residue frequencies using an antigen-antibody specific
knowledge-based statistical potential.
3.4.3. Antigen-antibody docking
Predictions of the epitope and paratope help us identify the key

residues involved in the formation of the antigen-antibody inter-
face but do not provide the pairwise relationship between them.
Docking the antigen onto the antibody reveals the contact residue
pairs from the interface. This information can be utilized to ration-
ally mutate the antibody residues to improve the interface comple-
mentarity and thereby enhancing the binding affinity.

Protein-protein docking is a method used to predict the best
binding mode of two interacting proteins. It involves two steps;
generation of decoys using conformational sampling and reorder-
ing of decoys using scoring functions which sort the decoys by
binding affinity. The best scoring complex (lowest energy struc-
ture) should, ideally, be the native complex (or the best binding
complex). Although the problem of antigen-antibody docking is a
subset of a more general problem of protein-protein docking, tools
which utilize antibody-specific decoy generation and scoring
methods perform better than the general methods [126,127].
SnugDock [129] and the Antibody Mode of ClusPro [130] are anti-
body specific docking protocols.

Results of the antigen-antibody docking can be substantially
improved by providing information about the antigen epitope
and the antibody paratope. This information can be used to apply
constraints for the docking procedure. Since not many antigen-
antibody specific docking algorithms exist, one can generate a
large number of decoys using a generic docking algorithm [82],
such as ZDOCK [131] and PatchDock [132], and then reorder the
decoys using antibody specific scoring functions such as DockSor-
ter [122].
4. Vaccine design

The previous parts of the review dealt with computational
methods for designing proteins, antibodies and peptides to combat
disease conditions. However, the prevention of diseases offers a
viable if not more effective alternative. Preventive measure often
involves administering vaccines that mimic the pathogenic antigen
proteins, so that antibodies can be raised against them, which can
in turn prevent future infections. With the increase in the inci-
dence of Zika, Dengue etc., the computational design of vaccines
is a key step in any preventive measure. The in silico design of vac-
cines involves grafting of the epitope residues on a structurally
similar template, as mentioned earlier in Section 2.1 followed by
mutations to stabilize the graft (Fig. 3). Because of structural and
chemical similarity, the epitope grafted onto a non-pathogenic
scaffold should elicit an antibody response against it, forming the
basis for long term immune protection. The newly engineered pro-
tein is then expressed and is injected into a mice/rabbit to generate
antibodies. The generated antibodies are checked for binding to the
antigenic epitope. After passing through various clinical trials
involving toxicity, binding affinity, cross reactivity tests etc. the
engineered immunogen can be administered as a vaccine.

Various in silico vaccine design studies have been carried out
with HIV-1 epitopes. Initial studies with insertion of continuous
linear epitope of HIV-1 gp41 subunit into a rhinovirus carrier
showed that the length, hydrophobic character and precise inser-
tion sites of the epitope are important for such design [133]. Con-
tinuous and discontinuous epitopes of gp41 subunit [134], gp120
subunit [135] and 4E10 [136] from HIV have been used for such
studies. Since side chain grafting sometimes introduces conforma-
tional differences in the backbone of the scaffold and the epitope,
up to RMSD �1 Å, backbone grafting is resorted to solve this prob-
lem [137]. This involves incorporation of the epitope onto the scaf-
fold followed by introduction of novel backbone regions in the



Fig. 3. The steps involved in vaccine design illustrated using the HIV gp120 protein (blue ribbons). A structure of the neutralizing antibody b12 (red ribbons) in complex with
the gp120 is known (pdb: 2NY7). (A) The eptiope of gp120 (yellow ribbons with residues in stick representation) that is recognized by the antibody is hence also known. To
elicit the same antibody response, a vaccine has to present the same epitope. Protein with similar geometries as the epitope are identified (eg., the protein shown in cyan
ribbons). (B) The epitope residues are grafted onto the new protein and additional mutations could be made to stabilize the grafted region. (C) The affinity of the antibody
towards the epitope is optimized by increasing interactions between them. Extraneous regions/domains are removed and amino acids are resurfaced to decrease unwanted
secondary binding sites and increase binding affinity. All protein representations were rendered using UCSF Chimera 1.11.2 [208]. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

A. Roy et al. /Methods 131 (2017) 33–65 41
insertion junction. The scaffolds that clash the least with the anti-
body are retained for further investigation. Different sequence
modifications are made via backbone and side chain modifications,
changing length and secondary structure of the connecting seg-
ments to generate structures with progressively lower ROSETTA
energies. This procedure reduced the RMSD between the scaffold
and epitope to 0.2 Å. The antibodies produced by backbone grafting
showed a thirty-fold improvement in its affinity to 2F5 epitope as
compared to those produced by side chain grafting. Human-guided
design is followed to remove extraneous domains, optimize the
solubility and eliminate undesired mutations like unpaired cysti-
nes, solvent exposed hydrophobic groups, buried hydrogen bond
acceptor or donor groups, extra interactions with the epitope etc.
Using similar techniques, discontinuous epitopes from two a

http://2NY7
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helices of RSV (Respiratory Syncytial Virus) F peptide that binds
the motavizamav antibody were designed [138]. The design
involved searching for scaffold for each of the two epitope seg-
ments. On finding a match, the scaffold was then searched for
the other epitope while maintaining a rigid body conformation
for the first epitope. The epitope specific antibodies produced were
precise, but in low titre.

The above-mentioned techniques might produce cross-reactive
epitopes, reduced solubility and/or stability of the engineered pro-
tein. Resurfacing, is a method used to overcome such problems
that involves changing most of the exposed residues other than
the epitope of interest (Fig. 3). Antigens were designed by keeping
the core, glycan site and the antibody binding region of the HIV-1
gp120 protein constant. The remaining surface amino acids were
resurfaced based on evolutionary information, structural and solu-
bility consideration and with similarities and differences with wild
type or pre-existing designs [139]. RosettaDesign was then used to
select low energy sequences. Similarly resurfaced antigens were
created for the 4E10 epitope [140]. During resurfacing sequences
with smaller sequence identity to parent sequence were preferred
to increase the sampling space. Another method involves removal
of extra epitopes on the scaffold to reduce the size of the epitope-
scaffold (Fig. 3). The 4E10 epitope scaffold was trimmed to get rid
of an extra domain of the scaffold to reduce the size of the antigen.
Newer backbone fragments of different lengths were inserted in
the trimmed region and optimal sequences were obtained such
that the newly modeled region was maximally stabilized. The
affinity between the antigen and antibody can be enhanced by
increasing interactions of the scaffold with the CDR H3 loop of
the antibody [141]. The epitope scaffold produced bound the 2F5
antibodies with sub-nanomolar affinity.

Earlier methods were bound by the scaffold proteins of prede-
termined structures. Newer methods, such as Fold From Loop
[142], were developed to allow full backbone flexibility to improve
the tailoring of the epitope. The functional motif and the target
topology are taken as an input for the design. Ab initio folding is
then carried out to produce diverse backbone conformations simi-
lar to the target topology. The sequences are then iteratively
designed followed by structural relaxation and full atom optimiza-
tion to select for low energy sequences. The conformation of the
functional motif is mostly fixed throughout the computation. This
is followed by human guided computational optimization. Immu-
nization of macaques with these engineered scaffolds produced
potent neutralizing antibodies against RSV F epitope [142].

5. Prediction and improvement of in vivo efficacy

The efficacy of the designed biotherapeutics depend on multiple
factors including their affinity to bind specifically to their targets,
their ability to be retained in the circulatory system for longer
durations, their ability to penetrate cells, their immunogenicity,
solubility and toxicity. This section will briefly discuss how each
of these properties is predicted in the designed biotherapeutics.

5.1. Binding affinity

Protein-protein interactions are crucial to the functioning of
cells and are often regarded as potential drug targets. For instance,
monoclonal antibodies could competitively interact with their cog-
nate antigens with high binding affinities. Predicting the binding
affinities, usually given in terms of the dissociation constant Kd,
of protein complexes is therefore an important step in the rational
design of such proteins. The relationship between Kd and the bind-
ing free energy is given by:

DG ¼ �RTlnðKdÞ ðviÞ
where DG is the change in the free energy, is the gas constant
and T is the absolute temperature. The prediction of binding affini-
ties usually utilizes energy functions that evaluate the binding free
energy of a protein complex. These energy functions are either
force field-based energy functions or knowledge-based statistical
potentials.

Force-field based energy functions extensively calculate ener-
gies derived from various parameters like van der Waals interac-
tions, hydrogen bonding, electrostatic interactions, hydrophobic
effect, desolvation energies and entropic effects [143–145]. The
binding energy of a protein complex is calculated by summing
up the individual contribution of these parameters. Most com-
monly used force field-based methods include free energy pertur-
bation (FEP) [146,147], Molecular Mechanics – Poisson Boltzmann
Surface Area (MM-PBSA) [148,149], Molecular Mechanics - Gener-
alized Born Surface Area (MM-GBSA) [148,150], and thermody-
namic integration [146,151]. FEP has high accuracy but is
computationally expensive and time consuming. MM-PBSA and
MM-GBSA use the Poisson Boltzmann equation and the General-
ized Born approximation respectively, for calculation of the elec-
trostatic contribution and are computationally more efficient
[145,151]. Knowledge-based potentials are energy functions
derived from statistically analyzing various descriptors of known
protein structures. These functions exploit the regularities in pro-
tein structures to calculate potentials, based on the assumption
that frequently occurring states correspond to low energy states
[152,153].

Multiple tools can identify hot spots on protein interfaces,
which when mutated to alanine strongly attenuate binding. These
tools calculate the values for the change in binding energy of the
protein complex upon mutation. A few of the most commonly used
hot spot prediction tools are: HotPOINT [154], which uses a
knowledge-based potential; KFC [155], KFC2a and KFC2b [156]
use a combination of knowledge-based potential and machine
learning; MINERVA [157] uses machine learning; FoldX [158] and
Robetta [159] use force field-based energy functions. Alanine Scan-
ning can be used to study the effect of a particular amino acid on
the binding affinity of the protein complex. AlaScan [160] is a
user-friendly graphical user interface based on FEP calculations
and is aimed at providing an easy platform to perform in silico Ala-
nine Scanning Mutagenesis. Although multiple methods for predic-
tion of binding affinities exist, as of now their accuracy is limited as
can be seen from their mediocre performance in the CAPRI (Critical
Assessment of Prediction of Interactions) binding affinity test
[161].

5.2. Cell penetration ability

Currently, biotherapeutics are either enzymes/proteins that
overcome a deficiency, or drugs that act by interacting with cell
surface receptors. However, the sub-cellular localization varies
from one target to another. An effective biotherapeutic should be
able to cross the lipid bilayer of the cell plasma membrane. Since
the cellular receptors and transporters only allow selective entry
of molecules, the therapeutics must possess the ability to cross
the membrane without the aid of these membrane proteins. Some
peptides are capable of crossing the cell membrane and are termed
as Cell Penetrating Peptides (CPPs). These CPPs act as the vehicles
that carry the therapeutics to their required site of action. CPPs are
5–30 residue long peptides that have a strong hydrophobic charac-
ter and frequently exhibit a set of terminal cationic charges that
allows them to penetrate the cell membrane while still being in
the soluble form [162,163]. Some therapeutic peptides can enter
the cell membrane by themselves and are called bioactive CPPs.
For other therapeutics, a CPP tag can act as a transporter that car-
ries the therapeutic into the cell. Antimicrobial peptides produced
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by various organisms have the ability to penetrate the cell mem-
brane and kill the microbe, either by forming a pore in the cell
membrane or by acting as a metabolic inhibitor [164]. The ability
to design therapeutics with such properties is desirable.

Mechanisms by which CPPs enter the cells have been proposed
to be endocytosis, ATP based transport or micropinocytosis
[162,163]. But the structural changes that lead to this transport
are unclear. Nevertheless, the analysis of various naturally occur-
ring proteins and descriptors for CPP characteristics has led to
the discovery and development of novel CPPs. Some of them are
tissue-specific and even organelle-specific, thus leading to
increased bioavailability and effective targeting. CPPsite [165] is
a database that includes around 1800 CPPs and their various char-
acteristics such as nature of sequence, structure, chemical modifi-
cations, type of therapeutic cargo delivered and experimental
validations. The description of CPPs is collected through data min-
ing. Apart from the already available CPPs, servers such as CPPpred
[166] and CellPPD [167] predict whether a query peptide sequence
can act as a CPP. CPPpred uses artificial neural networks, and
CellPPD uses support vector machines to predict the cell penetra-
tion ability of peptides. Since CPPs are not a part of the host system
antigen repertoire, they can be immunogenic. Many of the CPPs are
not immunogenic by themselves but induce an immune response
when delivered with certain drugs [168]. Thus, the major limita-
tion in the use of CPPs is the non-availability of methods to predict
immunogenicity of the CPP tagged biotherapeutic.
5.3. Half-life

The half-life of the therapeutic has significant implications for
the treatment of diseases. If the rate of clearance of the drug from
the system is high, the number of doses needed to maintain its
effective concentration would increase. A more rapid clearance
rate is undesirable as the mode of administration for a majority
of biotherapeutics is through injections. Therefore, once a biother-
apeutic is designed, its half-life must be evaluated. In silico predic-
tion of the half-life of proteins and peptides allows for rapid
estimation of the efficiency of the biotherapeutics. Half Life Predic-
tion [169], SprotP [170] and ProtParam [171] are the web servers
that predict the half-lives of proteins and peptides. ProtParam uses
the identity of the N-terminal amino acid to estimate the half-life
of the protein. There is experimental evidence of a correlation
between the N-terminal residue and its half-life. However, the ser-
ver is organism-specific, and the same N-terminal residue in differ-
ent biological systems (Yeast, Mammalian, E. coli) results in a
vastly different estimate of the half-life. Half Life Prediction is
based on an SVM technique that considers amino acid composition
as a feature. It also suggests mutations that could potentially
improve the half-life. SprotP also utilizes SVMs, but the predictions
are limited to human cells. The experimentally determined half-
lives of peptides are stored in the PEPlife [172] repository, which
stores about 1193 unique peptides. In the case of peptide and pro-
tein therapeutics, the presence of proteases results in extremely
short half-lives, in the order of a few minutes. On account of this,
it is essential to modify the peptide or proteins so that they have
an enhanced half-life. These modifications include PEGylation
[173], glycosylation [174] and co-injection with an unstructured
protein XTEN [175]. Apart from this, the fixed chirality of amino
acids in biological systems can be exploited. In living systems L-
amino acids are incorporated in proteins hence proteases do not
recognize D-amino acids. The stability of designed protein and
peptide therapeutics can be enhanced by incorporation of D-
amino acids instead of L-amino acids [176]. Furthermore, cycliza-
tion of peptides ensures protection from proteases. A more detailed
account of half-life extension is presented in [177].
5.4. Solubility

Designed proteins and peptides need to be water soluble to pre-
vent aggregation and to increase bioavailability. Most of the bio-
therapeutics, especially proteins, are synthesized in bacteria as
recombinants (commonly in E. coli) [178]. Since well-designed pro-
teins already exhibit hydrophilic surface and hydrophobic core,
they are water soluble. However, the overexpression of a desired
protein or peptide could lead to its aggregation or retention in
inclusion bodies [179]. This necessitates biotherapeutics to be
expressed in a water-soluble form. The solubility of the biothera-
peutics can be assessed by various web servers like ccSOL omics
[180] and PROSO II [181]. CcSOL omics uses SVM technique to
quantify the solubility of the protein. The descriptors for SVM
include, degree of hydrophilicity, hydrophobicity and propensities
to exist in secondary structures like a helices, b sheets or coils.
PROSO II also uses SVM but the features are the composition of
monopeptides and dipeptides. Both these methods have compara-
ble accuracies and are freely available. These tools also suggest
mutations that could increase the solubility of the proteins. Better
solubility is associated with more bioavailability and for injected
therapeutics it ensures maintenance of an effective dose in the
serum.

5.5. Immunogenicity

As therapeutic proteins and peptides are foreign entities, their
introduction into the body can potentially evoke an immune
response. The immune response is highest for subcutaneous injec-
tion and progressively reduces with intramuscular, intranasal and
intravenous injections. Oral biotherapeutics are least likely to
induce an immune response [182]. Not only the mode of adminis-
tration, but also the dosage and the nature of the biotherapeutic
determine its immunogenicity. Post translational modifications
such as glycosylation could alter immunogenicity [183]. The
immune response is mediated by B cells and T cells. Biotherapeu-
tics on contact with the antigen presenting cells (APCs) get pro-
cessed into small peptide fragments and are expressed on the
membrane of APCs. B cells encounter APCs with these fragments
(epitopes) that may or may not be sequentially contiguous and
result in an activation of the immune response [184]. The epitopes
for T cells are small contiguous peptides that are recognized in con-
jugation with MHC molecules. On the one hand, high immuno-
genicity can deter the efficacy of some biotherapeutics by
reducing their half-life. On the other hand, this is a desirable char-
acteristic of a vaccine. Hence, it is prudent to predict the immuno-
genicity of biotherapeutics in silico. Various sequence and structure
based methods have been proposed to predict the immunogenicity
of a therapeutic. Sequence based methods rely on machine learn-
ing and quantitative matrices whereas structure based methods
use docking, threading and molecular dynamics simulations to
infer the binding efficacy of epitopes. Most of these methods have
been developed for the prediction of T cell epitopes and as
described in previous sections, are extensively used in vaccine
design (see reviews [185,186] for more details). However, their
scores can also be indicative of the extent of immune activation
that they can provide. There have been successful attempts at
these predictions. EpiMatrix [187], for example, predicts the
immunogenicity with respect to the T cell receptor and has been
experimentally shown to be accurate [188]. Prediction of immuno-
genicity does not help in drug development unless the proteins can
be modified to exclude regions responsible for eliciting an immune
response. This has been shown to be feasible, by King et al., who
have used an SVM based method to predict and eliminate epitopes
while retaining protein stability and target specificity [189].
Although their method is capable of predicting T-cell epitopes,



Table 2
A comprehensive list of all clinically approved biotherapeutics compiled from DrugBank [209] and FDA [https://www.accessdata.fda.gov/scripts/cder/daf/]. Biotherapeutics have been listed with their year of approval, type of
macromolecule, route of administration, target molecule, location of the target and the disease/disorder they are used to treat.

Name Year of
Approval

Type of
macromolecule

Route of administration Target Target location Disease or disorder

ALBUKED 1942 Protein Liquid (subcutaneous); solution
(intravenous); suspension
(intravenous)

Apolipoprotein e; serum amyloid a-1
protein; protein ambp; cytochrome
p450 2c9; myeloperoxidase; udp-
glucuronosyltransferase1–9

Secreted; endoplasmic reticulum
membrane; lysosome; microsome

Severe blood loss, hypervolemia,
hypoproteinemia

ACTHAR 1950 Peptide Gel (intramuscular; subcutaneous);
powder

Adrenocorticotropic hormone receptor;
corticoliberin; 3 beta-hydroxysteroid
dehydrogenase/delta5 –>4-isomerase
type 2; 25-hydroxyvitamin d-1 alpha
hydroxylase

Cell membrane; secreted;
endoplasmic reticulum membrane;
mitochondrion membrane;
mitochondrion

Infantile spasms, exacerbations of
multiple sclerosis, rheumatic; collagen;
dermatologic; allergic states;
ophthalmic; respiratory; and
edematous state

HYPERTET 1957 Protein Injection (intramuscular) Immune system Plasma Clostridium tetani
FIBRINOLYSIN 1964 Protein Ointment; topical Fibrin Secreted Minor burns, superficial wounds,

ulcers, surgical wounds, and superficial
hematomas

SULODEXIDE 1971 Glycan Oral (capsule) Heparin cofactor 2; antithrombin-iii Secreted Anticoagulant
Hyp Rho-D 1971 Protein Injection (intramuscular) (rho) d immunoglobin Secreted Rh disease
SOFRADEX 1972 Peptide Solution/drops (auricular (otic));

solution/drops (ophthalmic); solution
(ophthalmic); liquid (ophthalmic);
solution/drops (auricular (otic);
ophthalmic); liquid (auricular (otic);
ophthalmic); cream (topical); solution
(auricular (otic); ophthalmic);
ointment (auricular (otic);
ophthalmic); solution/drops (topical);
spray (nasal); ointment (topical)

Multidrug resistance protein 1 Cell membrane Skin lesions, surface wounds and eye
infections

CHORIONIC
GONADOTROPIN

1974 Protein Liquid; powder Lutropin-choriogonadotropic hormone
receptor

Cell membrane Induction of final follicular maturation,
ovulation and early luteinization in
infertile women

ALLERGENIC EXTRACT
DP

1974 Protein Solution (percutaneous; intradermal;
subcutaneous); liquid (intradermal;
subcutaneous; percutaneous);
concentrate (intradermal;
percutaneous; subcutaneous);
concentrate (intradermal;
percutaneous; subcutaneous);
concentrate (intradermal;
subcutaneous); concentrate
(intradermal; subcutaneous); injection
(cutaneous; intradermal;
subcutaneous)

Immune system Immune cells Treatment for dust mite allergies.

HYPERRAB 1974 Protein Liquid (intramuscular); injection
(intramuscular); solution
(intramuscular);

Immune system Plasma Rabies

KINLYTIC 1978 Protein Injection Urokinase plasminogen activator
surface receptor; plasminogen;
urokinase-type plasminogen activator;
tissue-type plasminogen activator;
plasminogen activator inhibitor 2;
plasminogen activator inhibitor 1;
plasma serine protease inhibitor;
nidogen-1; low-density lipoprotein
receptor-related protein 2; suppressor
of tumorigenicity 14 protein

Cell membrane; secreted; cytoplasm;
membrane

Pulmonary emboli
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Table 2 (continued)

Name Year of
Approval

Type of
macromolecule

Route of administration Target Target location Disease or disorder

ELSPAR 1978 Protein Injection (intramuscular; intravenous;
subcutaneous)

L-asparagine Plasma Acute lymphoblastic leukemia

ILETIN II 1979 Peptide Injection Insulin receptor; hla class ii
histocompatibility antigen

Cell membrane; nucleus; lysosome;
cytoplasm; cytoplasmic vesicle;
secreted; membrane; endoplasmic
reticulum membrane

Diabetes mellitus

FEIBA VH 1979 Protein Injection (intravenous) Blood Plasma Hemophilia a or b
PITOCIN 1980 Peptide Injection (intramuscular; intravenous) Oxytocin-neurophysin 1; oxytocin

receptor; prolyl endopeptidase
Secreted; cell membrane; cytoplasm Enhance uterine contractions

STREPTASE 1981 Protein Intracoronary; intravenous Plasminogen; proteinase-activated
receptor 1; cytosolic phospholipase a2

Secreted; cell membrane; cytoplasm Acute myocardial infarction, deep vein
thrombosis, pulmonary embolism,
acute or subacute thrombosis of
peripheral arteries and chronic
occlusive arterial diseases, occlusion of
central retinal artery or veins

THYROGLOBULIN 1981 Protein Tablet (oral) Thyroid gland Secreted Hypothyroidism
ATGAM 1981 Protein Injection Thymus lymphocytes Cell membrane; other cells Prevention of renal transplant rejection

and for the treatment of aplastic
anemia

HUMULIN 1982 Peptide Powder Insulin receptor; retinoblastoma-
associated protein; cathepsin d;
insulin-like growth factor 1 receptor;
insulin-degrading enzyme;
neuroendocrine convertase 2;
carboxypeptidase e; neuroendocrine
convertase 1; protein nov homolog;
low-density lipoprotein receptor-
related protein 2; insulin-like growth
factor-binding protein 7;
synaptotagmin-like protein 4;
cytochrome p450 1a2

Cell membrane; nucleus; lysosome;
cytoplasm; cytoplasmic vesicle;
secreted; membrane; endoplasmic
reticulum membrane

Diabetes mellitus

ROFERON-A 1986 Protein Liquid (intramuscular; subcutaneous);
powder

Interferon alpha/beta receptor 1;
interferon alpha/beta receptor 2

Membrane Hairy cell leukemia, aids-related
kaposi’s sarcoma, condylomata
acuminata and chronic myeloid
leukemia, chronic hepatitis b, chronic
hepatitis c (adults), recurrent or
metastatic renal cell carcinoma, non-
hodgkin’s lymphoma, malignant
melanoma

DIGIBIND 1986 Protein Injection (intravenous) Digoxin Secreted Digitoxin overdose
INTRON 1986 Protein Injection Interferon alpha/beta receptor 2;

interferon alpha/beta receptor 1;
cytochrome p450 1a2

Membrane; endoplasmic reticulum
membrane

Hairy cell leukemia, malignant
melanoma, follicular lymphoma,
condylomata acuminata, aids-related
kaposi’s sarcoma, chronic hepatitis c,
chronic hepatitis b

CIBACALCIN 1986 Peptide Injection Thyroid gland Secreted Hypercalcemia
CATHFLO 1987 Protein Injection (intravenous) Urokinase plasminogen activator

surface receptor; fibrinogen alpha
chain; plasminogen; plasminogen
activator inhibitor 1

Cell membrane; secreted Acute ischemic stroke (ais), acute
myocardial infarction (ami)

PROTAMINE SULFATE 1987 Peptide Injection Heparin Secreted Reversal of heparin
SUPREFACT 1988 Peptide Solution (nasal); solution

(subcutaneous); liquid (subcutaneous;
nasal); spray (nasal);

Lutropin-choriogonadotropic hormone
receptor; gonadotropin-releasing
hormone receptor; cytochrome p450
19a1

Cell membrane; membrane Prostate cancer

(continued on next page)
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Table 2 (continued)

Name Year of
Approval

Type of
macromolecule

Route of administration Target Target location Disease or disorder

EPOGEN/PROCRIT 1989 Protein Injection Erythropoietin receptor Cell membrane Anemia
ALFERON 1989 Protein Injection (subcutaneous) Interferon alpha/beta receptor 1;

interferon alpha/beta receptor 2
Membrane Condylomata acuminata.

EMINASE 1989 Protein Injection (intravenous) Urokinase plasminogen activator
surface receptor; fibrinogen alpha
chain; plasminogen; plasminogen
activator inhibitor 1

Cell membrane; secreted For lysis of acute pulmonary emboli,
intracoronary emboli and management
of myocardial infarction

ENGERIX B 1989 Virus Injection (intramuscular) Immune system Plasma Hepatitis b
GEREF 1990 Peptide Injection Growth hormone-releasing hormone

receptor
Cell membrane Idiopathic growth hormone deficiency

ADAGEN 1990 Protein Injection Adenosine; growth factor receptor-
bound protein 2

Nucleus Severe combined immunodeficiency
disease

ALPHANINE SD 1990 Protein (intravenous); powder Blood Plasma Hemophilia b
LEUKINE 1991 Protein Injection Granulocyte-macrophage colony-

stimulating factor receptor subunit
alpha; bone marrow proteoglycan;
interleukin-3 receptor subunit alpha;
cytokine receptor common subunit
beta; syndecan-2

Cell membrane; secreted; membrane Acute myelogenous leukemia

BOTOX 1991 Protein Injection Synaptosomal-associated protein 25;
rho-related gtp-binding protein rhob

Cytoplasm; late endosome membrane Chronic migraine, upper limb
spasticity, cervical dystonia, axillary
hyperhidrosis, blepharospasm,
strabismus

CEREDASE 1991 Protein Injection Glucocerebroside Plasma Type 1 gaucher disease
NEUPOGEN 1991 Protein Injection Granulocyte colony-stimulating factor

receptor; neutrophil elastase
Secreted; cytoplasmic Neutropenia

SURVANTA 1991 Protein Suspension (endotracheal); suspension
(endotracheal)

Lung Secreted Respiratory distress syndrome (rds)

THROMBATE III 1991 Protein Powder Blood Plasma Hereditary antithrombin iii deficiency
(at-iii) in surgical or obstetrical
procedures and thromboembolism

LENOGRASTIM 1991 Protein Injection Granulocyte colony-stimulating factor
receptor

Secreted Bone marrow transplantation,
cytotoxic-induced neutropenia,
mobilisation of peripheral blood
progenitor cells, neutropenia, reduction
in the duration of neutropenia
following bone marrow
transplantation.

PROLEUKIN 1992 Protein Injection (intravenous) Interleukin-2 receptor subunit beta;
interleukin-2 receptor subunit alpha;
cytokine receptor common subunit
gamma; prostaglandin g/h synthase 2;
cytosolic phospholipase a2;
cytochrome p450 3a4; xanthine
dehydrogenase/oxidase; cytochrome
p450 2e1

Membrane; microsome membrane;
cytoplasm; endoplasmic reticulum
membrane

Metastatic renal cell carcinoma,
metastatic melanoma (adults)

ORTHOCLONE 1992 Protein Injection T-cell surface glycoprotein cd3 epsilon
chain; low affinity immunoglobulin
gamma fc region receptor iii-b;
complement c1r subcomponent;
complement c1q subcomponent
subunit a; complement c1q
subcomponent subunit b; complement
c1q subcomponent subunit c; low
affinity immunoglobulin gamma fc

Cell membrane; cytoplasmic;
secreted; cytoplasm; membrane

Renal transplant acute rejection
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Table 2 (continued)

Name Year of
Approval

Type of
macromolecule

Route of administration Target Target location Disease or disorder

region receptor iii-a; complement c1s
subcomponent; high affinity
immunoglobulin gamma fc receptor i;
low affinity immunoglobulin gamma fc
region receptor ii-a; low affinity
immunoglobulin gamma fc region
receptor ii-b; low affinity
immunoglobulin gamma fc region
receptor ii-c; t-cell surface glycoprotein
cd3 delta chain; t-cell surface
glycoprotein cd3 amma chain; t-cell
surface glycoprotein cd3 zeta chain

PULMOZYME 1993 Protein Solution (respiratory (inhalation)); DNA Nucleus Cystic fibrosis
BETASERON 1993 Protein Injection Interferon alpha/beta receptor 1;

interferon alpha/beta receptor 2
Membrane Multiple sclerosis

TRASYLOL 1993 Protein Injection Trypsin-1; chymotrypsinogen b;
plasminogen; kallikrein-1

Secreted; cytoplasmic Reduce perioperative blood loss and the
need for blood transfusion in patients
undergoing cardiopulmonary bypass

CEREZYME 1994 Protein Injection Glucocerebroside Secreted Non-neuronopathic (type 1) or chronic
neuronopathic (type 3) gaucher disease

REOPRO 1994 Protein Injection Integrin beta-3; low affinity
immunoglobulin gamma fc region
receptor iii-b; complement c1r
subcomponent; complement c1q
subcomponent subunit a; complement
c1q subcomponent subunit b;
complement c1q subcomponent
subunit c; low affinity immunoglobulin
gamma fc region receptor iii-a;
complement c1s subcomponent; high
affinity immunoglobulin gamma fc
receptor i; low affinity immunoglobulin
gamma fc region receptor ii-a; low
affinity immunoglobulin gamma fc
region receptor ii-b; low affinity
immunoglobulin gamma fc region
receptor ii-c; integrin alpha-iib;
vitronectin

Cell membrane; cytoplasmic;
secreted; cytoplasm; membrane

Unstable angina, prevention of
problems in percutaneous coronary
intervention

ONCASPAR 1994 Protein Injection L-asparagine Plasma Acute lymphoblastic leukemia
TARGOCID 1994 Peptide Injection (intramuscular; intravenous); D-ala-d-ala moiety of nam/nag peptide

subunits of peptidoglycan
Bacterial membrane Osteomyelitis, septic arthritis, non-

cardiac bacteremia, septicaemia
GENOTROPIN 1995 Protein Injection (subcutaneous) Growth hormone receptor; prolactin

receptor
Cell membrane; membrane Growth hormone deficiency (ghd),

prader-willi syndrome, small for
gestational age, turner syndrome, and
idiopathic short stature

HAVRIX 1995 Virus Injection (intramuscular) Immune system Immune cells Hepatitis a
HUMALOG 1996 Protein Injection (intravenous) Insulin receptor; insulin-like growth

factor 1 receptor; cytochrome p450 1a2
Cell membrane; endoplasmic
reticulum membrane

Diabetes mellitus

AVONEX 1996 Protein Injection Interferon alpha/beta receptor 1;
interferon alpha/beta receptor 2

Membrane Multiple sclerosis

COTAZYM 1996 Protein Capsule; oral Dietary fat; dietary protein; dietary
starch

Secreted Exocrine pancreatic insufficiency in
cystic fibrosis, chronic pancreatitis

COPAXONE 1996 Protein Injection Hla class ii histocompatibility antigen Cell membrane Multiple sclerosis
WELLFERON 1997 Protein Liquid (intramuscular; subcutaneous); Interferon alpha/beta receptor 2;

interferon alpha/beta receptor 1
Membrane Hairy cell leukemia
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Table 2 (continued)

Name Year of
Approval

Type of
macromolecule

Route of administration Target Target location Disease or disorder

NEUMEGA 1997 Protein Injection (subcutaneous) Interleukin-11 receptor subunit alpha Membrane Reduced platelets
INFERGEN 1997 Protein Solution (subcutaneous) Interferon alpha/beta receptor 1;

interferon alpha/beta receptor 2
Membrane Chronic hepatitis c

RITUXAN 1997 Protein Injection Low affinity immunoglobulin gamma fc
region receptor iii-b; complement c1r
subcomponent; complement c1q
subcomponent subunit a; complement
c1q subcomponent subunit b;
complement c1q subcomponent
subunit c; low affinity immunoglobulin
gamma fc region receptor iii-a;
complement c1s subcomponent; high
affinity immunoglobulin gamma fc
receptor i; low affinity immunoglobulin
gamma fc region receptor ii-a; low
affinity immunoglobulin gamma fc
region receptor ii-b; low affinity
immunoglobulin gamma fc region
receptor ii-c; b-lymphocyte antigen
cd20

Cell membrane; cytoplasmic;
secreted; cytoplasm

Non-hodgkin’s lymphoma (nhl),
chronic lymphocytic leukemia (cll),
rheumatoid arthritis (ra)

REGRANEX 1997 Protein Gel (cutaneous); gel (topical); Platelet-derived growth factor receptor
beta; alpha-2-macroglobulin; platelet-
derived growth factor receptor alpha

Cell membrane; secreted Lower extremity diabetic neuropathic
ulcers

GONAL-F 1997 Protein Injection Primary sexual organs Cells Induction of ovulation and pregnancy
in the oligo-anovulatory infertile
patient

CARTICEL 1997 Cells Intra-articular Cartilage Cells Cartilage defects
REFLUDAN 1998 Protein Injection Prothrombin Secreted Anticoagulation in patients with

heparin-associated thrombocytopenia
ENBREL 1998 Protein Injection Tumor necrosis factor; lymphotoxin-

alpha; low affinity immunoglobulin
gamma fc region receptor iii-b;
complement c1r subcomponent;
complement c1q subcomponent
subunit a; complement c1q
subcomponent subunit b; complement
c1q subcomponent subunit c; low
affinity immunoglobulin gamma fc
region receptor iii-a; complement c1s
subcomponent; high affinity
immunoglobulin gamma fc receptor i;
low affinity immunoglobulin gamma fc
region receptor ii-a; low affinity
immunoglobulin gamma fc region
receptor ii-b; low affinity
immunoglobulin gamma fc region
receptor ii-c; tumor necrosis factor
receptor superfamily member 1b;
prostaglandin g/h synthase 2

Cell membrane; secreted;
cytoplasmic; cytoplasm; microsome
membrane

Rheumatoid arthritis

RETAVASE 1998 Protein Injection (intravenous) Urokinase plasminogen activator
surface receptor; fibrinogen alpha
chain; plasminogen; plasminogen
activator inhibitor 1

Cell membrane; secreted Acute myocardial infarction (ami) the
reduction of the incidence of congestive
heart failure

GLUCAGEN 1998 Peptide Injection Glucagon receptor; glucagon-like
peptide 2 receptor; glucagon-like
peptide 1 receptor

Cell membrane Hypoglycemia
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Table 2 (continued)

Name Year of
Approval

Type of
macromolecule

Route of administration Target Target location Disease or disorder

LYMERIX 1998 Protein Injection (intramuscular) Toll-like receptor 2 Membrane Lyme disease (vaccine)
REMICADE 1998 Protein Injection Tumor necrosis factor Cell membrane Crohn’s disease
HERCEPTIN 1998 Protein Injection Low affinity immunoglobulin gamma fc

region receptor iii-b; complement c1r
subcomponent; complement c1q
subcomponent subunit a; complement
c1q subcomponent subunit b;
complement c1q subcomponent
subunit c; low affinity immunoglobulin
gamma fc region receptor iii-a;
complement c1s subcomponent; high
affinity immunoglobulin gamma fc
receptor i; low affinity immunoglobulin
gamma fc region receptor ii-a; low
affinity immunoglobulin gamma fc
region receptor ii-b; low affinity
immunoglobulin gamma fc region
receptor ii-c; receptor tyrosine-protein
kinase erbb-2; epidermal growth factor
receptor; cytochrome p450 19a1

Cell membrane; cytoplasmic;
secreted; cytoplasm; membrane

Her2 overexpressing breast cancer,
metastatic gastric or gastroesophageal
junction adenocarcinoma

SIMULECT 1998 Protein Injection Interleukin-2 receptor subunit alpha;
low affinity immunoglobulin gamma fc
region receptor iii-b; complement c1r
subcomponent; complement c1q
subcomponent subunit a; complement
c1q subcomponent subunit b;
complement c1q subcomponent
subunit c; low affinity immunoglobulin
gamma fc region receptor iii-a;
complement c1s subcomponent; high
affinity immunoglobulin gamma fc
receptor i; low affinity immunoglobulin
gamma fc region receptor ii-a;
interleukin-2 receptor subunit beta;
low affinity immunoglobulin gamma fc
region receptor ii-b; low affinity
immunoglobulin gamma fc region
receptor ii-c

Membrane; cell membrane;
cytoplasmic; secreted; cytoplasm

Acute organ rejection

THYMOGLOBULIN 1998 Protein Injection (intravenous) T-cell surface glycoprotein cd1a; major
histocompatibility complex class i-
related gene protein; integrin alpha-l;
t-lymphocyte activation antigen cd86;
low affinity immunoglobulin gamma fc
region receptor ii-b; t-cell surface
glycoprotein cd4; integrin beta-1;
integrin alpha-v; integrin beta-3

Cell membrane; membrane Renal transplant acute rejection

SYNAGIS 1998 Protein Injection Fusion glycoprotein f0; low affinity
immunoglobulin gamma fc region
receptor iii-b; complement c1r
subcomponent; complement c1q
subcomponent subunit a; complement
c1q subcomponent subunit b;
complement c1q subcomponent
subunit c; low affinity immunoglobulin
gamma fc region receptor iii-a; high

Virion membrane; cell membrane;
cytoplasmic; secreted; cytoplasm

Respiratory syncytial virus (rsv)

(continued on next page)
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Table 2 (continued)

Name Year of
Approval

Type of
macromolecule

Route of administration Target Target location Disease or disorder

affinity immunoglobulin gamma fc
receptor i; low affinity immunoglobulin
gamma fc region receptor ii-a; low
affinity immunoglobulin gamma fc
region receptor ii-b; low affinity
immunoglobulin gamma fc region
receptor ii-c

SUCRAID 1998 Protein Solution (oral) Sucrose Gastrointestinal tract Congenital sucrose-isomaltase
deficiency (csid)

ONTAK 1999 Protein Injection Interleukin-2 receptor subunit alpha;
cytokine receptor common subunit
gamma; interleukin-2 receptor subunit
beta

Membrane Cutaneous t-cell lymphoma

ACTIMMUNE 1999 Protein Injection Interferon gamma receptor 1;
interferon gamma receptor 2;
cytochrome p450 1a2

Membrane; endoplasmic reticulum
membrane

Chronic granulomatous disease (cgd)
associated infections, malignant
osteopetrosis

NOVOSEVEN 1999 Protein Injection (intravenous) Coagulation factor x; tissue factor;
serine protease hepsin; tissue factor
pathway inhibitor; vitamin k-
dependent gamma-carboxylase;
coagulation factor vii

Secreted; membrane; endoplasmic
reticulum membrane

Glanzmann’s thrombasthenia,
congenital fvii deficiency, congenital or
acquired hemophilia

STEMGEN 1999 Protein Injection Hematopoietic progenitors Cells Autologous peripheral blood progenitor
cell (pbpc) transplantation

CUROSURF 1999 Protein Suspension (endotracheal); Lung Secreted Respiratory distress syndrome (rds)
TNKASE 2000 Protein Injection Urokinase plasminogen activator

surface receptor; plasminogen activator
inhibitor 1; fibrinogen alpha chain;
plasminogen activator inhibitor 2;
tetranectin; keratin

Cell membrane; secreted; cytoplasm;
endoplasmic reticulum lumen;
endoplasmic reticulum membrane

Acute myocardial infarction

MYOBLOC 2000 Protein Injection Vesicle-associated membrane protein
1; vesicle-associated membrane
protein 2; synaptotagmin-2

Cytoplasmic vesicle Cervical dystonia

MYLOTARG 2000 Protein Injection Myeloid cell surface antigen cd33; low
affinity immunoglobulin gamma fc
region receptor iii-b; complement c1r
subcomponent; complement c1q
subcomponent subunit a; complement
c1q subcomponent subunit b;
complement c1q subcomponent
subunit c; low affinity immunoglobulin
gamma fc region receptor iii-a;
complement c1s subcomponent; high
affinity immunoglobulin gamma fc
receptor i; low affinity immunoglobulin
gamma fc region receptor ii-a; low
affinity immunoglobulin gamma fc
region receptor ii-b; low affinity
immunoglobulin gamma fc region
receptor ii-c

Cell membrane; cytoplasmic;
secreted; cytoplasm

Cd33 positive acute myeloid leukemia

OVIDREL 2000 Protein Solution (subcutaneous); Follicle-stimulating hormone receptor;
lutropin-choriogonadotropic hormone
receptor

Cell membrane Induction of final follicular maturation,
ovulation and early luteinization in
infertile women

NOVOLOG 2000 Protein Injection Insulin receptor; cytochrome p450 1a2 Cell membrane; endoplasmic
reticulum membrane

Diabetes mellitus
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Table 2 (continued)

Name Year of
Approval

Type of
macromolecule

Route of administration Target Target location Disease or disorder

ZADAXIN 2000 Peptide Injection (subcutaneous) T-cell Plasma Hepatitis b and c
ARANESP 2001 Protein Injection Erythropoietin receptor Cell membrane Anemia
SYLATRON 2001 Protein Injection (subcutaneous) Interferon alpha/beta receptor 1;

interferon alpha/beta receptor 2;
cytochrome p450 1a2; cytochrome
p450 2d6

Membrane; endoplasmic reticulum
membrane

Melanoma

KINERET 2001 Protein Injection Interleukin-1 receptor type 1 Membrane Rheumatoid arthritis
XIGRIS 2001 Protein Injection (intravenous) Coagulation factor viii; coagulation

factor v; plasminogen activator
inhibitor 1; thrombomodulin; vitamin
k-dependent protein s; ceruloplasmin;
prothrombin; platelet factor 4; plasma
serine protease inhibitor; serpin b6;
vitamin k-dependent gamma-
carboxylase; endothelial protein c
receptor

Secreted; membrane; cytoplasm;
endoplasmic reticulum membrane

Severe sepsis

CAMPATH 2001 Protein Injection (intravenous) Campath-1 antigen; low affinity
immunoglobulin gamma fc region
receptor iii-b; complement c1r
subcomponent; complement c1q
subcomponent subunit a; complement
c1q subcomponent subunit b;
complement c1q subcomponent
subunit c; low affinity immunoglobulin
gamma fc region receptor iii-a; high
affinity immunoglobulin gamma fc
receptor i; low affinity immunoglobulin
gamma fc region receptor ii-a; low
affinity immunoglobulin gamma fc
region receptor ii-b; low affinity
immunoglobulin gamma fc region
receptor ii-c

Cell membrane; cytoplasmic;
secreted; cytoplasm

B-cell chronic lymphocytic leukemia
(b-cll)

NATRECOR 2001 Peptide Injection Atrial natriuretic peptide receptor 1;
atrial natriuretic peptide receptor 2;
atrial natriuretic peptide receptor 3

Membrane; cell membrane Acutely decompensated congestive
heart failure with dyspnea at rest

ELIGARD 2002 Peptide Injection Gonadotropin-releasing hormone
receptor

Cell membrane Prostate cancer

PEGASYS 2002 Protein Injection Interferon alpha/beta receptor 2;
interferon alpha/beta receptor 1;
cytochrome p450 1a2

Membrane; endoplasmic reticulum
membrane

Hepatitis b and c

NEULASTA 2002 Protein Injection (subcutaneous); solution
(subcutaneous)

Granulocyte colony-stimulating factor
receptor; neutrophil elastase

Secreted; cytoplasmic Mobilization of peripheral blood
progenitor cells, neutropenia

ELITEK 2002 Protein Injection Uric acid Secreted Management of plasma uric acid levels
in pediatric patients with leukemia,
lymphoma, and solid tumor
malignancies

HUMIRA 2002 Protein Injection Tumor necrosis factor; low affinity
immunoglobulin gamma fc region
receptor iii-b; complement c1r
subcomponent; complement c1q
subcomponent subunit a; complement
c1q subcomponent subunit b;
complement c1q subcomponent
subunit c; low affinity immunoglobulin

Cell membrane; cytoplasmic;
secreted; cytoplasm

Rheumatoid arthritis

(continued on next page)
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Table 2 (continued)

Name Year of
Approval

Type of
macromolecule

Route of administration Target Target location Disease or disorder

gamma fc region receptor iii-a;
complement c1s subcomponent; high
affinity immunoglobulin gamma fc
receptor i; low affinity immunoglobulin
gamma fc region receptor ii-a; low
affinity immunoglobulin gamma fc
region receptor ii-b; low affinity
immunoglobulin gamma fc region
receptor ii-c

ZEVALIN 2002 Protein Injection (intravenous) B-lymphocyte antigen cd20; low
affinity immunoglobulin gamma fc
region receptor iii-b; complement c1r
subcomponent; complement c1q
subcomponent subunit a; complement
c1q subcomponent subunit b;
complement c1q subcomponent
subunit c; low affinity immunoglobulin
gamma fc region receptor iii-a;
complement c1s subcomponent; high
affinity immunoglobulin gamma fc
receptor i; low affinity immunoglobulin
gamma fc region receptor ii-a; low
affinity immunoglobulin gamma fc
region receptor ii-b; low affinity
immunoglobulin gamma fc region
receptor ii-c

Cell membrane; cytoplasmic;
secreted; cytoplasm

Follicular b-cell non-hodgkin’s
lymphoma (nhl)

BRAVELLE 2002 Protein (subcutaneous); powder Follicle-stimulating hormone receptor Cell membrane Induction of ovulation
FORTEO 2002 Peptide Injection Parathyroid hormone/parathyroid

hormone-related peptide receptor
Cell membrane Osteoporosis

XOLAIR 2003 Protein Injection High affinity immunoglobulin epsilon
receptor subunit alpha; high affinity
immunoglobulin epsilon receptor
subunit beta

Cell membrane; membrane Asthma

ZEMAIRA 2003 Protein Injection (intravenous) Neutrophil elastase Cytoplasmic Alpha1-proteinase inhibitor deficiency
CUBICIN 2003 Peptide Injection Bacterial outer membrane; lipoteichoic

acid synthesis
Bacterial membrane Skin and skin structure infections,

staphylococcus aureus bloodstream
infections (bacteremia), including those
with rightsided infective endocarditis

SOMAVERT 2003 Protein Injection Growth hormone receptor; sterol 26-
hydroxylase

Cell membrane; mitochondrion
membrane; cytoplasm; endoplasmic
reticulum membrane; secreted

Acromegaly

ALDURAZYME 2003 Protein Injection Iduronic acid Secreted Hurler and hurler-scheie forms of
mucopolysaccharidosis i (mps i)

AMEVIVE 2003 Protein Injection (intramuscular; intravenous) T-cell surface antigen cd2; low affinity
immunoglobulin gamma fc region
receptor iii-b; complement c1r
subcomponent; complement c1q
subcomponent subunit a; complement
c1q subcomponent subunit b;
complement c1q subcomponent
subunit c; low affinity immunoglobulin
gamma fc region receptor iii-a; high
affinity immunoglobulin gamma fc
receptor i; low affinity immunoglobulin
gamma fc region receptor ii-a; low

Membrane; cell membrane;
cytoplasmic; secreted; cytoplasm

Plaque psoriasis
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Table 2 (continued)

Name Year of
Approval

Type of
macromolecule

Route of administration Target Target location Disease or disorder

affinity immunoglobulin gamma fc
region receptor ii-b; low affinity
immunoglobulin gamma fc region
receptor ii-c

RAPTIVA 2003 Protein Injection Integrin alpha-l; low affinity
immunoglobulin gamma fc region
receptor iii-b; complement c1r
subcomponent; complement c1q
subcomponent subunit a; complement
c1q subcomponent subunit b;
complement c1q subcomponent
subunit c; low affinity immunoglobulin
gamma fc region receptor iii-a; high
affinity immunoglobulin gamma fc
receptor i; low affinity immunoglobulin
gamma fc region receptor ii-a; low
affinity immunoglobulin gamma fc
region receptor ii-b; low affinity
immunoglobulin gamma fc region
receptor ii-c

Membrane; cell membrane;
cytoplasmic; secreted; cytoplasm

Plaque psoriasis

FABRAZYME 2003 Protein Injection Globotriaosylceramide Secreted Fabry disease
PLENAXIS 2003 Peptide Injection Gonadotropin-releasing hormone

receptor
Cell membrane Prostate cancer

FUZEON 2003 Peptide Injection Envelope glycoprotein; cytochrome
p450 2c19; cytochrome p450 2e1

Endoplasmic reticulum membrane Hiv-1

IPRIVASK 2003 Protein (subcutaneous) Carboxypeptidase a1 Secreted Prophylaxis for deep vein thrombosis
ERBITUX 2004 Protein Injection Epidermal growth factor receptor; low

affinity immunoglobulin gamma fc
region receptor iii-b; complement c1r
subcomponent; complement c1q
subcomponent subunit a; complement
c1q subcomponent subunit b;
complement c1q subcomponent
subunit c; low affinity immunoglobulin
gamma fc region receptor iii-a;
complement c1s subcomponent; high
affinity immunoglobulin gamma fc
receptor i; low affinity immunoglobulin
gamma fc region receptor ii-a; low
affinity immunoglobulin gamma fc
region receptor ii-b; low affinity
immunoglobulin gamma fc region
receptor ii-c

Cell membrane; cytoplasmic;
secreted; cytoplasm

Metastatic colorectal cancer, squamous
cell cancer of the head and neck

MENOPUR 2004 Protein Injection (intramuscular;
subcutaneous)

Follicle-stimulating hormone receptor;
lutropin-choriogonadotropic hormone
receptor

Cell membrane Development of multiple follicles and
pregnancy

KEPIVANCE 2004 Protein Injection Fibroblast growth factor receptor 2;
neuropilin-1; fibroblast growth factor
receptor 1; fibroblast growth factor
receptor 4; fibroblast growth factor
receptor 3; basement membrane-
specific heparan sulfate proteoglycan
core protein

Cell membrane; secreted Oral mucositis

LUVERIS 2004 Protein Injection (subcutaneous) Lutropin-choriogonadotropic hormone
receptor

Cell membrane Stimulation of follicular development
in infertile hypogonadotropic
hypogonadal women

(continued on next page)
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Table 2 (continued)

Name Year of
Approval

Type of
macromolecule

Route of administration Target Target location Disease or disorder

FOLLISTIM AQ 2004 Protein Injection Follicle-stimulating hormone receptor Cell membrane Release of multiple folicles, induction of
ovulation and pregnancy in
anovulatory infertile patients

VITRASE 2004 Protein Injection (subcutaneous) Transforming growth factor beta-1;
serum albumin; hyaluronan

Secreted Adjunct, hypodermoclysis

TYSABRI 2004 Protein Injection (intravenous); solution
(intravenous)

Integrin alpha-4; low affinity
immunoglobulin gamma fc region
receptor iii-b; complement c1r
subcomponent; complement c1q
subcomponent subunit a; complement
c1q subcomponent subunit b;
complement c1q subcomponent
subunit c; low affinity immunoglobulin
gamma fc region receptor iii-a; high
affinity immunoglobulin gamma fc
receptor i; low affinity immunoglobulin
gamma fc region receptor ii-a; low
affinity immunoglobulin gamma fc
region receptor ii-b; low affinity
immunoglobulin gamma fc region
receptor ii-c; intercellular adhesion
molecule 1

Membrane; cell membrane;
cytoplasmic; secreted; cytoplasm

Multiple sclerosis, crohn’s disease

AVASTIN 2004 Protein Injection Low affinity immunoglobulin gamma fc
region receptor iii-b; complement c1r
subcomponent; complement c1q
subcomponent subunit a; complement
c1q subcomponent subunit b;
complement c1q subcomponent
subunit c; low affinity immunoglobulin
gamma fc region receptor iii-a; high
affinity immunoglobulin gamma fc
receptor i; low affinity immunoglobulin
gamma fc region receptor ii-a; low
affinity immunoglobulin gamma fc
region receptor ii-b; low affinity
immunoglobulin gamma fc region
receptor ii-c; vascular endothelial
growth factor a

Cell membrane; cytoplasmic;
secreted; cytoplasm

Metastatic colorectal cancer, non-
squamous non-small cell lung cancer,
glioblastoma, cervical cancer,
metastatic renal cell carcinoma,

APIDRA 2004 Protein Injection Insulin receptor; cytochrome p450 1a2 Cell membrane; endoplasmic
reticulum membrane

Diabetes mellitus

MACUGEN 2004 Protein Injection Neuropilin-1 Cell membrane Neovascular (wet) age-related macular
degeneration

MULTIFERON 2004 Protein Injection (subcutaneous) Interferon alpha/beta receptor 1 Membrane Malignant melanoma
INCRELEX 2005 Protein Injection Insulin-like growth factor 1 receptor;

insulin-like growth factor-binding
protein 3; insulin receptor; cation-
independent mannose-6-phosphate
receptor

Cell membrane; secreted; lysosome
membrane

Primary insulin-like growth factor-1
deficiency (primary igfd)

SYMLIN 2005 Peptide Injection (subcutaneous) Receptor activity-modifying protein 1;
receptor activity-modifying protein 2;
receptor activity-modifying protein 3;
calcitonin receptor

Membrane; cell membrane Type 1 and type 2 diabetes

NAGLAZYME 2005 Protein Injection Perilipin-3; dermatan sulfate Cytoplasm Mucopolysaccharidosis vi (mps vi;
maroteaux-lamy syndrome)

ORENCIA 2005 Protein Injection T-lymphocyte activation antigen cd80;
t-lymphocyte activation antigen cd86

Membrane; cell membrane Rheumatoid arthritis, juvenile
idiopathic arthritis
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Table 2 (continued)

Name Year of
Approval

Type of
macromolecule

Route of administration Target Target location Disease or disorder

LEVEMIR 2005 Protein Injection Insulin receptor; serum albumin;
cytochrome p450 1a2

Cell membrane; secreted;
endoplasmic reticulum membrane

Diabetes mellitus

HYLENEX 2005 Protein Injection Hyaluronan; transforming growth
factor beta-1; serum albumin

Secreted Adjuvant

VECTIBIX 2006 Protein Injection Epidermal growth factor receptor Cell membrane Metastatic colorectal carcinoma
LUCENTIS 2006 Protein Injection Vascular endothelial growth factor a Secreted Neovascular (wet) age-related macular

degeneration
MYOZYME 2006 Protein Injection (intravenous) Perilipin-3; dermatan sulfate; heparan

sulfate
Cytoplasm Pompe disease (gaa deficiency)

HEPAGAM B 2006 Protein Injection Hbsag Virion membrane Hepatitis b
SOLIRIS 2007 Protein Injection Complement c5 Secreted Paroxysmal nocturnal hemoglobinuria,

atypical hemolytic uremic syndrome
MIRCERA 2007 Protein Injection Erythropoietin receptor Cell membrane Anaemia associated with chronic

kidney disease
NPLATE 2008 Protein Injection Thrombopoietin receptor Cell membrane Thrombocytopenia
RECOMODULIN 2008 Protein Injection (intravenous) Coagulation factor v; prothrombin Secreted Disseminated intravascular coagulation
ARCALYST 2008 Protein Injection Interleukin-1 beta; interleukin-1 alpha;

interleukin-1 receptor antagonist
protein

Cytoplasm; secreted Caps, also known as cryopyrin-
associated periodic syndromes,
including familial cold auto-
inflammatory syndrome (fcas) and
muckle-wells syndrome (mws)

CIMZIA 2008 Protein Injection Tumor necrosis factor Cell membrane Rheumatoid arthritis and crohn’s
disease

SILAPO 2008 Protein Injection Erythropoietin receptor Cell membrane Treatment of anaemia associated with
chronic renal failure

CALCITONIN-SALMON 2009 Peptide Liquid (intramuscular; subcutaneous);
solution (nasal); solution
(intramuscular; subcutaneous); spray

Calcitonin receptor Cell membrane Postmenopausal osteoperosis

WILATE 2009 Protein Injection Coagulation factor x; phytanoyl-coa
dioxygenase

Secreted; peroxisome; membrane;
endoplasmic reticulum lumen;
endoplasmic reticulum membrane;
endoplasmic reticulum-golgi
intermediate compartment
membrane; cell membrane;
endoplasmic reticulum-golgi
intermediate compartment

Von willebrand

STELARA 2009 Protein Injection Interleukin-12 subunit beta;
interleukin-23

Secreted Plaque psoriasis and psoriatic arthritis,
crohn’s disease.

ILARIS 2009 Protein Injection Interleukin-1 beta Cytoplasm Familial cold autoinflammatory
syndrome (fcas) and muckle-wells
syndrome (mws), which are both part
of the cryopyrin-associated periodic
syndromes (caps) as well as for patients
2 years of age and older to treat
systemic juvenile idiopathic arthritis
(sjia).

BERINERT 2009 Peptide Injection (intravenous) Complement c1r subcomponent;
complement c1s subcomponent;
plasma kallikrein; coagulation factor
xii; prothrombin; coagulation factor xi;
tissue-type plasminogen activator

Cytoplasmic; secreted Acute abdominal, facial, or laryngeal
attacks of hereditary angioedema

ARZERRA 2009 Protein Injection B-lymphocyte antigen cd20 Cell membrane Chronic lymphocytic leukemia (cll)
SIMPONI 2009 Protein Injection Tumor necrosis factor Cell membrane Active rheumatoid arthritis (ra), active

psoriatic arthritis (psa), juvenile
idiopathic arthritis, active ankylosing
spondylitis (as), ulcerative colitis (uc)
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Table 2 (continued)

Name Year of
Approval

Type of
macromolecule

Route of administration Target Target location Disease or disorder

RIASTAP 2009 Protein Powder (topical); injection Blood Plasma Congenital fibrinogen deficiency,
afibrinogenemia and
hypofibrinogenemia.

ATRYN 2009 Protein Injection Blood Plasma Hereditary antithrombin deficiency
KALBITOR 2009 Protein Injection Kallikrein Secreted Hereditary angioedema
XIAFLEX 2010 Protein Ointment (topical); powder Collagen alpha-1(i) chain; collagen

alpha-1(ii) chain; collagen alpha-1(iii)
chain; collagen alpha-2(i) chain

Secreted Dupuytren’s contracture

LUMIZYME 2010 Protein Injection Cation-dependent mannose-6-
phosphate receptor; glycogen

Lysosome membrane Pompe disease (gaa deficiency)

ACTEMRA 2010 Protein Injection Interleukin-6 receptor subunit alpha Basolateral cell membrane Rheumatoid arthritis
XGEVA 2010 Protein Injection (subcutaneous); solution

(subcutaneous); injection
(subcutaneous)

Tumor necrosis factor ligand
superfamily member 11

Cell membrane Giant cell tumor of bone

PROVENGE 2010 Cells Injection (intravenous) Prostatic acid phosphatase Secreted Asymptomatic or minimally
symptomatic metastatic castrate
resistant (hormone refractory) prostate
cancer

VPRIV 2010 Protein Injection Glucosylceramidase Lysosome membrane Type 1 gaucher disease
KRYSTEXXA 2010 Protein Injection Uric acid Plasma Chronic gout
PROFILNINE SD 2010 Protein Injection (intravenous) Blood Plasma Hemophilia b patients, reversal of

vitamin k antagonist (vka, e.g.,
warfarin)

YERVOY 2011 Protein Injection (intravenous); liquid
(intravenous)

Cytotoxic t-lymphocyte protein 4 Cell membrane Unresectable or metastatic melanoma

NULOJIX 2011 Protein Injection T-lymphocyte activation antigen cd86;
t-lymphocyte activation antigen cd80

Cell membrane; membrane Rheumatoid arthritis

ADCETRIS 2011 Protein Injection Tumor necrosis factor receptor
superfamily member 8; cytochrome
p450 3a4; cytochrome p450 3a5;
multidrug resistance protein 1

Cell membrane; endoplasmic
reticulum membrane

Hodgkin lymphoma and systemic
anaplastic large cell lymphoma

BENLYSTA 2011 Protein Injection Tumor necrosis factor ligand
superfamily member 13b

Cell membrane Systemic lupus erythematosus (sle)

EYLEA 2011 Protein Injection Vascular endothelial growth factor a;
placenta growth factor; vascular
endothelial growth factor b

Secreted Neovascular age-related macular
degeneration (amd)

ERWINAZE 2011 Protein Injection Asparagine Plasma Acute lymphoblastic leukemia (all)
BEXXAR THEREPY 2012 Protein Solution (intravenous) B-lymphocyte antigen cd20; low

affinity immunoglobulin gamma fc
region receptor iii-b; complement c1r
subcomponent; complement c1q
subcomponent subunit a; complement
c1q subcomponent subunit b;
complement c1q subcomponent
subunit c; low affinity immunoglobulin
gamma fc region receptor iii-a; high
affinity immunoglobulin gamma fc
receptor i; low affinity immunoglobulin
gamma fc region receptor ii-a; low
affinity immunoglobulin gamma fc
region receptor ii-b; low affinity
immunoglobulin gamma fc region
receptor ii-c

Cell membrane; cytoplasmic;
secreted; cytoplasm

Cd20 positive, relapsed or refractory,
low-grade, follicular, or transformed
nonhodgkin’s lymphoma

BYDUREON 2012 Peptide Injection Glucagon-like peptide 1 receptor Cell membrane Type 2 diabetes
LUCINACTANT 2012 Peptide Intratracheal Endogenous human surfactant protein

b mimic
Secreted Respiratory distress syndrome (rds)
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Table 2 (continued)

Name Year of
Approval

Type of
macromolecule

Route of administration Target Target location Disease or disorder

PERJETA 2012 Protein Injection Receptor tyrosine-protein kinase erbb-
2

Cell membrane Her2-positive metastatic breast cancer

ELELYSO 2012 Protein Injection Glucocerebroside Secreted Type 1 gaucher’s disease.
JETREA 2012 Protein Injection Alpha-2-macroglobulin; alpha-2-

antiplasmin; fibronectin
Secreted Symptomatic vitreomacular adhesion

VORAXAZE 2012 Protein Injection Methotrexate Secreted Toxic plasma methotrexate
concentrations

GATTEX 2012 Peptide Injection Glucagon-like peptide 2 receptor Cell membrane Short bowel syndrome (sbs),
malabsorption associated with the
removal of the intestine

RAXIBACUMAB 2012 Protein Injection (intravenous) Protective antigen Secreted Anthrax
VARIZIG 2012 Protein Liquid (intramuscular); injection

(intramuscular; intravenous); solution
(intramuscular; intravenous)

Virus Virus Varicella zoster virus (anti-vzv).

GRANIX 2012 Protein Injection G-csf receptors Cell membrane Neutropenia
BIVIGAM 2013 Protein Injection Low affinity immunoglobulin gamma fc

region receptor iii-b; low affinity
immunoglobulin gamma fc region
receptor iii-a; high affinity
immunoglobulin gamma fc receptor i;
low affinity immunoglobulin gamma fc
region receptor ii-a; low affinity
immunoglobulin gamma fc region
receptor ii-b; low affinity
immunoglobulin gamma fc region
receptor ii-c; high affinity
immunoglobulin gamma fc receptor ib;
complement c3; complement c4-a;
complement c4-b; complement c5

Cell membrane; cytoplasm; secreted Primary humoral immunodeficiency

KADCYLA 2013 Protein Injection Cytochrome p450 3a4; cytochrome
p450 3a5; receptor tyrosine-protein
kinase erbb-2; multidrug resistance
protein 1

Endoplasmic reticulum membrane;
cell membrane

Metastatic breast cancer

GAZYVA 2013 Protein Injection B-lymphocyte antigen cd20 Cell membrane Chronic lymphocytic leukemia
NOVOEIGHT 2013 Protein Injection Blood Secreted Hemophilia a
TRETTEN 2013 Protein Injection Blood Plasma Congenital factor xiii a-subunit

deficiency
KCENTRA 2013 Protein Injection (intravenous) Blood Plasma Reversal of vitamin k agonist
VASOSTRICT 2014 Peptide Injection (intramuscular;

subcutaneous); liquid (intramuscular;
subcutaneous);

Vasopressin v1a receptor; vasopressin
v2 receptor; vasopressin v1b receptor;
canalicular multispecific organic anion
transporter 1

Cell membrane; apical cell membrane Vasodilatory shock

RAGWITEK 2014 Mixed (extract
of cell)

Oral Immune system Plasma Ragweed allergy

CYRAMZA 2014 Protein Solution (intravenous); Vascular endothelial growth factor
receptor 2

Cell junction Advanced gastric or gastro-esophageal
junction adenocarcinoma

SAXENDA 2014 Peptide Injection Glucagon-like peptide 1 receptor;
dipeptidyl peptidase 4; neprilysin

Cell membrane; secreted Weight management

ENTYVIO 2014 Protein Injection Integrin alpha-4; integrin beta-7 Membrane Ulcerative colitis and crohn’s disease
OPDIVO 2014 Protein Injection (intravenous); Programmed cell death protein 1 Membrane Unresectable (cannot be surgically

removed) or metastatic melanoma
SYLVANT 2014 Protein Injection Interleukin-6 Secreted Multicentric castleman’s disease (mcd)
KEYTRUDA 2014 Protein Injection Programmed cell death protein 1 Membrane Unresectable or metastatic melanoma
TANZEUM 2014 Peptide Injection Glucagon-like peptide 1 receptor Cell membrane Type 2 diabetes
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Table 2 (continued)

Name Year of
Approval

Type of
macromolecule

Route of administration Target Target location Disease or disorder

TRULICITY 2014 Peptide Injection Glucagon-like peptide 1 receptor Cell membrane Type 2 diabetes
MYALEPT 2014 Protein Injection Leptin receptor Cell membrane Congenital or acquired generalized

lipodystrophy
VIMIZIM 2014 Protein Injection N-acetylgalactosamine-6-sulfatase Lysosome Morquio syndrome
BLINCYTO 2014 Protein (intravenous); powder B-lymphocyte antigen cd19; t-cell

surface glycoprotein cd3 delta chain
Membrane Philadelphia chromosome-negative

relapsed or refractory b-cell precursor
acute lymphoblastic leukemia (all)

PLEGRIDY 2014 Protein Injection Unknown Unknown Multiple sclerosis
RUCONEST 2014 Peptide Injection Complement c1r subcomponent;

complement c1s subcomponent;
plasma kallikrein; coagulation factor
xii; prothrombin; coagulation factor xi;
tissue-type plasminogen activator

Cytoplasmic; secreted Hereditary angioedema

OBIZUR 2014 Protein Injection Blood Plasma Acquired haemophilia a (aha).
ELOCTATE 2014 Protein Injection (intravenous) Blood Plasma Hemophilia a
ALPROLIX 2014 Protein Injection (intravenous) Blood Plasma Hemophilia b
BASAGLAR 2015 Protein Injection Insulin receptor; insulin-like growth

factor 1 receptor; cytochrome p450 1a2
Cell membrane; endoplasmic
reticulum membrane

Type 1 and type 2 (adults) diabetes

DEFITELIO 2015 Nucleic acid Injection (intravenous) Adenosine receptor a1; adenosine
receptor a2a; adenosine receptor a2b

Cell membrane Hepatic veno-occlusive disease, with
renal or pulmonary dysfunction
following hematopoietic stem-cell
transplantation (hsct)

NATPARA 2015 Protein Injection Parathyroid hormone/parathyroid
hormone-related peptide receptor;
parathyroid hormone 2 receptor

Cell membrane Hypocalcemia

EMPLICITI 2015 Protein Injection Slam family member 7 Membrane Multiple myeloma
NUCALA 2015 Protein Injection Interleukin-5 Secreted Asthma
COSENTYX 2015 Protein Injection (subcutaneous); powder Interleukin-17a Secreted Uveitis, rheumatoid arthritis,

ankylosing spondylitis, and psoriasis.
ANTHRASIL 2015 Protein Liquid (intravenous) Protective antigen Secreted Anthrax
UNITUXIN 2015 Protein Injection (intravenous) Ganglioside gd2 Cell membrane High-risk neuroblastoma
STRENSIQ 2015 Protein Injection Sphingosine 1-phosphate receptor 1;

pyrophosphate
Cell membrane Hypophosphatasia

NUWIQ 2015 Protein Injection (intravenous) Blood Secreted Hemophilia a
PRAXBIND 2015 Protein Injection (intravenous) Dabigatran etexilate External drug inhibitor Reversal of dabigatran
PRALUENT 2015 Protein Injection Proprotein convertase subtilisin/kexin

type 9
Cytoplasm High cholesterol

REPATHA 2015 Protein Injection Proprotein convertase subtilisin/kexin
type 9

Cytoplasm Heterozygous/homozygous familial
hypercholesterolemia or clinical
atherosclerotic cardiovascular disease

ADYNOVATE 2015 Protein Injection (intravenous) Blood Plasma Hemophilia a
DARZALEX 2015 Protein Injection Adp-ribosyl cyclase 1 Membrane Multiple myeloma
PORTRAZZA 2015 Protein Solution (intravenous) Epidermal growth factor receptor Cell membrane Non-small cell lung cancer (nsclc)
ZARXIO 2015 Protein Injection Granulocyte colony-stimulating factor

receptor
Secreted Severe chronic or acute neutropenia

TRESIBA 2015 Peptide Injection Insulin receptor Cell membrane Diabetes mellitus
KANUMA 2015 Protein Injection Cholesteryl esters and triglycerides Cell membrane Lysosomal acid lipase deficiency (lal-d)
COAGADEX 2015 Protein Injection (intravenous) Blood Plasma Heriditary factor x deficiency
EPTIFIBATIDE 2016 Peptide Injection (intravenous); Integrin beta-3 Cell membrane Acute coronary syndrome
IDELVION 2016 Protein Powder Coagulation factor x; coagulation factor

xi; coagulation factor viii;
prothrombin; coagulation factor vii;
vitamin k-dependent gamma-
carboxylase; prolow-density
lipoprotein receptor-related protein 1

Secreted; endoplasmic reticulum
membrane; cell membrane

Hemophilia b
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Table 2 (continued)

Name Year of
Approval

Type of
macromolecule

Route of administration Target Target location Disease or disorder

ZINBRYTA 2016 Protein Injection Interleukin-2 receptor subunit alpha;
low affinity immunoglobulin gamma fc
region receptor iii-b; complement c1r
subcomponent; complement c1q
subcomponent subunit a; complement
c1q subcomponent subunit b;
complement c1q subcomponent
subunit c; low affinity immunoglobulin
gamma fc region receptor iii-a; high
affinity immunoglobulin gamma fc
receptor i; low affinity immunoglobulin
gamma fc region receptor ii-a;
interleukin-2 receptor subunit beta;
low affinity immunoglobulin gamma fc
region receptor ii-b; low affinity
immunoglobulin gamma fc region
receptor ii-c

Membrane; cell membrane;
cytoplasmic; secreted; cytoplasm

Multiple sclerosis

ANTHIM 2016 Protein Solution (intravenous) Anthrax toxin Plasma Anthrax
EXONDYS 51 2016 Nucleic acid Injection (intravenous) Dmd-001 gene (exon 51 target site) Nucleus Duchenne muscular dystrophy
LARTRUVO 2016 Protein Injection (intravenous) Platelet-derived growth factor receptor

alpha
Cell membrane Soft tissue sarcoma

TALTZ 2016 Protein Injection Interleukin-17a Secreted Plaque psoriasis
TECENTRIQ 2016 Protein Injection Programmed cell death 1 ligand 1 Cell membrane Locally advanced or metastatic

urothelial carcinoma
ZINPLAVA 2016 Protein Injection Clostridium difficile toxin b Toxin Neutralizes clostridium difficile toxin b
SPINRAZA 2016 Protein Injection Exonuclease Nucleus Spinal muscular atrophy
AMJEVITA 2016 Protein Injection Tnf-alpha Cell membrane Rheumatoid arthritis, juvenile

idiopathic arthritis, psoriatic arthritis,
ankylosing spondylitis, adult crohn’s
disease, ulcerative colitis, plaque
psoriasis

ERELZI 2016 Protein Injection Tnf Secreted Asthma
CINQAIR 2016 Protein Injection Il-5 Secreted Rheumatoid arthritis, polyarticular

juvenile idiopathic arthritis, ankylosing
spondylitis, plaque psoriasis

ODACTRA 2017 Protein Solution (percutaneous;
subcutaneous); liquid (intradermal;
percutaneous; subcutaneous);
concentrate (intradermal;
percutaneous; subcutaneous); injection
(cutaneous; intradermal;
subcutaneous)

Immune system Immune cells Treatment for dust mite allergies.

SILIQ 2017 Protein Injection (subcutaneous) Interleukin (il)-17 receptor a Secreted Asthma, psoriasis, crohn’s disease,
psoriatic arthritis, and rheumatoid
arthritis.
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computational prediction of B cell epitopes is still a challenge. The
non-contiguous nature of B cell epitopes make it difficult to predict
using the current computational methods [190]. The most accurate
B-cell epitope predicting method, SEPIa [191] has an area under
the Receiver Operating Characteristic (AUROC) curve of 0.65,
where the value of 0.5 is that of a random classifier. This is an area
of active research and the prediction of non-contiguous B-cell epi-
topes is still a challenging problem.
5.6. Toxicity

The toxicity of chemical drugs mainly arises from off-target
effects and undesirable products formed as a result of their meta-
bolism. Biotherapeutics have the advantage of avoiding these off-
target effects due to the specificity of these molecules towards
their targets. The toxicity of therapeutic proteins arises from two
factors; immunogenicity, which has been discussed previously,
and aggregation. Various diseases such as Alzheimer’s and Parkin-
son’s are suspected to be caused by aggregation of proteins. These
protein aggregation events are not well understood and are being
actively investigated [192]. Even though the precise mechanism
has not been completely elucidated, some sequence motifs that
promote aggregation have been identified [193]. Based on this
information, tools such as PASTA 2.0 [194], TANGO [195], Zyggre-
gator [196] have been developed to detect the aggregation-prone
segments in proteins based on their amino acid sequence. A direct
consequence of aggregation on administration of the biological
therapeutic is hyper-activation of the target molecule. This is quite
evident in monoclonal antibodies where the antibodies aggregate
on the platelets leading to thrombocytopenia [197]. Some peptide
therapeutics have toxicity associated with them whose origins are
not clear [198]. The designed peptide must be non-toxic and this
can be tested in silico by tools such as ToxinPred, which classify
peptides as toxic or non-toxic based on an SVM algorithm [199].
6. Conclusions and challenges

Over the past few years, there has been an upsurge in the num-
ber of clinically approved biotherapeutics (see Table 2 for a com-
prehensive list). Computational methods for the rational design
of proteins and peptides are vital in growing the repertoire of
biotherapeutics.

Generally, the computational methods involved in designing
biotherapeutic peptide and proteins are the same as those for
designing any other proteins/peptides. Protein design methods
could be classified into two broad categories: (a) prediction of
the structure of the backbone and (b) prediction of the amino acid
sequence.

Most of the methods usually adopt a predetermined backbone
conformation or use scaffold libraries to optimize geometric com-
plementarity with the target. This precludes the possibility of
adopting a novel fold. Searching for novel folds would increase
the range of possible designs and hence increase the versatility
of the design methods. Although methods that sample the back-
bone conformation have been developed and have successfully
designed proteins with novel folds [200], it still remains a compu-
tational challenge to exhaustively sample all possible backbone
folds. Another problem is the accuracy with which the energy func-
tions score the backbone conformations. Not only do we need bet-
ter backbone sampling methods but also better scoring methods to
come up with energetically favorable novel folds.

After the backbone conformation is predicted, sequence search
methods are used to predict the amino acid sequence of the protein
that would adopt a desired fold. Sequence search methods can be
divided into two broad classes, deterministic search methods and
stochastic search methods. Deterministic methods are computa-
tionally extensive but provide accurate results for small proteins.
The computation time for methods such as DEE increases exponen-
tially with increase in size of protein sequence, for such cases
stochastic methods are used that trade off accuracy for speed.
Stochastic methods do not always converge to the same solution.
Hybrid methods need to be developed using deterministic and
stochastic algorithms together to reduce the combinatorial com-
plexity while maintaining accuracy.

Although this review deals with the design of proteins with nat-
ural amino acids, some of the designs also incorporate non-natural
amino acids. Non-natural amino acids can be incorporated into
proteins/peptides either cotranslationally [201–203] by an
extended codon-anticodon pair system or by site/residue specific
chemical modifications [204]. Incorporation of non-natural amino
acids to generate mimetics of therapeutic peptides has been shown
to lower their susceptibility to proteolysis and improve bioavail-
ability [205].

The largest fraction of approved biological therapeutics in
recent years has been antibodies. Antibodies exhibit favorable
design properties as their binding preferences can be modulated
by making small changes in their complementarity determining
regions (CDRs). The CDRs are constituted by six hyper-variable
loops, of which five have canonical structures and can be modeled
using templates. The conformation of CDR-H3 loops, which do not
have canonical structures, are subject to techniques of loop mod-
eling that either involve using various templates and/or ab initio
methods. The CDR-H3 loop lies at the center of the antigen-
binding site and is therefore crucial for determining the binding
affinity of the antibody. Reliable prediction of the CDR-H3 loop
remains a hurdle in the rational design of antibodies. Affinity
maturation of a computationally designed antibody can be per-
formed if the contact residues of the epitope and paratope are
known along with their mode of interaction. Paratope residues
can be mutated to residues that improve the complementation
between the paratope and epitope interfaces. Methods for deter-
mination of the epitope and paratope need to be improved for
reliable prediction of mutations for improving the affinity of the
antibody. Antibody specific docking methods need to be devel-
oped that could sample VH-VL orientations to predict the best
binding mode of the antigen with the designed antibody. In one
such recent study Hattori and coworkers designed a pH sensitive
antibody against IL-6 receptor. The antibody binds to its antigen
in the slightly alkaline blood plasma (pH 7.4) whereas it rapidly
dissociates from its antigen in the acidic environment of the
endosome (pH 6.0) and gets recycled [206]. The design of such
antibodies could potentially decrease the dose size of the admin-
istered therapeutic.

Antibodies are used as curative agents that do not generate an
immunological memory. Vaccines raise an immune response that
generates antibodies and confer immunological memory. Vaccine
design involves a search for structurally similar epitope scaffolds
in the protein databank. This is followed by transplanting the epi-
tope residues onto the scaffold and introducing mutations to stabi-
lize these transplanted residues. Additional mutations are made to
increase solubility, affinity to antibody, removal of cross reactive
epitopes etc. With improved computational techniques, rational
design of vaccines is becoming more promising, but still the tech-
nique cannot be developed into an automated pipeline. Stabiliza-
tion of the grafted epitope is still a challenging step. Moreover,
the statistical potentials used for identification of stabilizing/desta-
bilizing mutations need improvement. Mutations predicted as sta-
bilizing can actually be destabilizing and vice versa. Newly
engineered proteins with the epitope might have the epitope in a
different conformation that may not elicit the required antibody
response.
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Designed biological therapeutics need to be tested for their
in vivo efficacies namely binding affinities to their targets, cell pen-
etration abilities, toxicity, half-life, solubility and immunogenicity.
Binding affinity prediction is important for designing biotherapeu-
tics, as they involve interactions with other biomolecules. Various
tools exist for its prediction but their accuracies are low as seen by
their performance on CAPRI tests. Cell penetration ability, ensures
that the developed biotherapeutic enters the cell/nucleus via the
membranes. Although methods exist for predicting the cell pene-
tration ability of biotherapeutics they are limited by their accura-
cies. The study of cell penetrating peptides could reveal
important features that could be engineered into biotherapeutics
to improve their cells penetration abilities. Improved half-life of
these therapeutics is necessary to reduce their dosage. In addition,
solubility of the designedmolecule is important for its bioavailabil-
ity. Various tools have been developed for the prediction of half-life
and solubility using machine learning algorithms that could pre-
dict beneficial mutations to improve both half-life and solubility.
Designed biotherapeutic also needs to be non-toxic i.e. should
not have adverse immunogenic response or form aggregates.
Aggregation prone segments can be predicted and removed using
various tools described earlier. Various tools have been developed
for predicting T-cell epitopes but prediction of B-cell epitopes yet
remains a major challenge.

Many challenges remain and new ones may present themselves,
such as finding the best mode of delivery for designed biothera-
peutics, prediction and minimization of off-target effects, predic-
tion and optimization of absorption, distribution, metabolism and
excretion (ADME) of the designed biotherapeutics. Efforts are being
made to tackle these problems either by modifying the therapeutic
proteins by covalent attachment of various compounds or by using
different formulations for delivery. Covalent attachment of poly-
ethylene-glycol (PEG), sialic acid, glycolic acid, etc. prolong circula-
tion and decrease glomerular filtration rate of therapeutic proteins.
Different formulations with colloidal systems such as liposomes or
nano/microparticulate materials such as PLGA (a polymer of lactic
acid and glycolic acid) microspheres are used for efficient delivery
of therapeutic proteins [207]. With improvements in computa-
tional capabilities and algorithms, in silico design of biological ther-
apeutics is a promising step ahead.
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