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Evolution has produced families of pro-
teins whose members share the same
three-dimensional architecture and fre-
quently have detectably similar sequences.
This conservation allows a structural
description of all proteins in a family even
when only the structure of a single mem-
ber is known. Evolution also provides the

rationale for structural genomics, a systematic and large-scale
effort towards structural characterization of all proteins1–3.
Structural genomics will achieve its aim by focusing the tech-
niques of X-ray crystallography and nuclear magnetic resonance
(NMR) spectroscopy on proteins predicted to have sufficiently
novel structures. The remaining protein sequences will then be
modeled based on one or more of the defined structures. Thus,
the new structures will put most protein sequences within a
‘modeling distance’ of at least one known structure while mini-
mizing the total cost of the project. The number of modeled
sequences will continue to be at least two orders of magnitude
larger than the number of the experimentally determined pro-
tein structures (Fig. 1, Table 1).

The ultimate aim of structural genomics is not to obtain the
structures or models for all proteins, but to contribute to biology
and medicine through functional annotation4–7, and through
applications of protein structures such as virtual drug screening8.
Proteins will be annotated by structural genomics based on evo-
lutionary homology as well as information about their structures
alone. Structural genomics will frequently establish homology
from structure and then infer function from homology. Such
structure-based transfer of functional information is preferred
over the sequence-based extrapolations because (i) similarity in
structure is generally more recognizable than similarity in
sequence and (ii) because structure frequently allows a more
judicious and informative transfer of functional description than
sequence alone. In addition to improving homology-based argu-
ments, structural genomics will contribute to functional annota-
tion of proteins by allowing the use of methods that depend only
on the structure of the protein to be characterized, such as the
matching of three-dimensional patterns5 and explicit docking of
ligands8. The first step in most structure-based annotations will
be calculation of a three-dimensional model, although there are

of course trivial cases where modeling is not needed and difficult
cases where modeling cannot yet be helpful. Given the needs of
functional annotation, structural genomics should ideally result
in all-atom models with few significant atomic errors larger than
∼ 3 Å. This condition implies that the protein structure modeling
method of choice for structural genomics is homology-based or
comparative modeling9,10 because it is the most detailed and
accurate of all current protein structure prediction techniques.
Comparative modeling can produce a model for a protein
sequence if it is recognizably related to at least one known pro-
tein structure. Comparative modeling involves fold assignment,
sequence-structure alignment, model building, and model eval-
uation (Box 1).

There are two additional approaches to modeling of protein
structures: fold assignment or threading11 and ab initio protein
structure prediction12 (Box 1). The fold assignment methods
assign a fold to the target sequence by aligning it with the most
compatible known protein structure from a set of alternatives. As
such, the fold assignment methods are best seen as the first, and
in many cases the most important, step in comparative protein
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The shapes of most protein sequences will be modeled based on their similarity to experimentally determined
protein structures. The current role, limitations, challenges and prospects for protein structure modeling (using
information about genes and genomes) are discussed in the context of structural genomics.

Fig. 1 Distribution of the % sequence identity between the known pro-
tein structures and proteins of Mycobaterium genitalium, modeled as in
ref. 13 in February, 2000. Segments of at least 30 residues in 333 (69%)
of the 479 sequences were possible to model or assign a fold. See Table 1
for definitions of a model and a fold assignment.
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structure modeling. The ab initio methods attempt to predict the
native structure only from the sequence of the modeled protein.
So far, the ab initio methods have produced models with the cor-
rect fold for only a few small protein domains. Nevertheless,
recent progress in ab initio prediction raises hope that structural
genomics will benefit from the ab initio modeling of long insert-
ed loops (>15 residues) and domains (<150 residues) that are
not accessible to experimental structure determination methods.

Target selection depends on errors in modeling
The targets for structure determination in structural genomics are
likely to be individual domains rather than multi-domain proteins.

The reason is that the structure of a single domain is usually easier
to determine by X-ray crystallography or NMR spectroscopy than
that of a more flexible multi-domain protein, although it would be
beneficial to determine the structures of whole proteins whenever
possible. To be effective, the targets for structural genomics should
be chosen to allow calculation of useful models for most protein
sequences in sequence databases while minimizing the total exper-
imental effort. We first ask what is a useful level of accuracy for the
models based on the experimental structures, and then estimate
how many structures need to be determined experimentally to
achieve the required level of accuracy. Thus, target selection is
informed by the successes and failures of modeling.

Table 1 Leveraging of experimental structures by comparative modeling1

Experimental Models or Models Useful Less accurate Fold assignments
Structure fold assignments models models only
P005 537 345 53 292 192
P007 42 40 28 12 2
P008 31 29 24 5 2
P018 172 50 11 39 122
P100 185 70 11 59 115
P102 26 25 22 3 1
P111 46 44 23 21 2

Total 1039 603 172 431 436

1A model is counted if it is at least 60 residues long and is assessed to have >30% of its Cα atoms within 3.5 Å of their true positions13. The models are
subdivided into two classes. “Useful models” are defined to be based on >30% sequence identity to the known structure, while “Less accurate mod-
els” are based on <30% sequence identity. “Fold assignments only” denotes the number of proteins with a significant PSI-BLAST 33 relationship to a
known structure (E < 0.0001) that failed to produce a reliable model. The calculations were performed in August, 2000.

Box 1 Modeling protein structures
For a list of pointers to a large number of protein structure modeling tools, many
of which are implemented as web servers, see http://guitar.rockefeller.edu/tools/,
and for a more detailed review, see ref. 10. The first step in modeling of a protein
sequence is to attempt to find related known protein structures in the Protein Data
Bank for as many domains in the modeled sequence as possible (fold recognition or
fold assignment). The folds of domains in the target sequence can be assigned by
pairwise and multiple sequence similarity searches as well as by threading methods
that rely explicitly on the known structures of the candidate template proteins.

While fold assignment predicts a structural relationship between two
proteins, it does not produce an explicit three-dimensional model of the target
sequence. Thus, fold assignment is generally followed by alignment of the target
sequence with one or more template structures to establish the best possible
correspondence between the residues in the target and template sequences. In the
more difficult cases, semi-manual alignment of the whole family is necessary for
the best results.

After the alignment, the next step is comparative model building that relies
on the alignment and the template structures to produce explicit three-dimensional models of the aligned domains of the target
protein. These models usually consist of all non-hydrogen atoms for both the main chain and side chains, including the insertions and
deletions relative to the template structures.

Finally, the models need to be evaluated by considering structural and energetic criteria, not sequence similarity alone. Model
evaluation helps to assess what information can be extracted from the model. If the model is unsatisfactory, it is possible to iterate
through the cycle of fold assignment, alignment, modeling, and model evaluation in the search for a satisfactory model. In fact, a useful
approach to fold assignment and alignment is to accept uncertain fold assignments and alignments, build a full atom comparative
model of the target sequence, and make the final decision about whether or not the match and the alignment are accurate by
evaluating the resulting comparative model.

If no suitable fold assignments, alignments and models are obtained, the only recourse are the ab initio protein structure
prediction methods that depend solely on the sequence of the protein to be modeled35–37. Unfortunately, these methods are not yet
generally applicable. However, in the hands of experts, a fraction of small proteins or domains can be modeled with accuracy that is
comparable to that of the models implied by very difficult fold assignments12.
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The accuracy of comparative models tends to increase with the
sequence similarity between the modeled sequence and the related
known structures13 (Fig. 2). To obtain a reasonable level of accura-
cy, the models must be based on alignments with few errors. Such
alignments can usually be obtained when the sequence identity
between the modeled sequence and at least one known structure is
>30%. Thus, structural genomics should determine protein struc-
tures such that most sequences in the genome databases match at
least one structure with an overall sequence identity of >30% (ref.
10). If this degree of sampling is achieved, most of the models will
be based on sequence identity in the range of 30–50%. Such mod-
els tend to have >85% of the Cα atoms within 3.5 Å of their correct
positions10. For functional analysis, the accuracy of the models is
frequently higher, because the active site regions generally exhibit
stronger structural conservation than the rest of the protein. The
models based on >30% sequence identity are usually suitable for a
number of applications10, including the testing of ligand binding
modes by designing site-directed mutants with altered binding
capacity, and computational screening of databases of small mole-
cules for potential inhibitors or lead compounds8. A fraction of the
models will be based on >50% sequence identity. The average
accuracy of such models approaches that of low resolution X-ray
structures (3 Å resolution) or medium-resolution NMR structures
(10 long-range restraints per residue)10. In addition to the applica-
tions listed above, these high quality models may be used for more
reliable calculations of ligand docking and drug design, provided
induced fit is not too large.

The requirement that each protein domain be at least
30% identical in sequence to a known structure deter-
mines the number of protein structures that need to be
produced by structural genomics. The actual number is
hard to estimate, partly because of the difficulties in
defining domain families from sequence alone. The
estimates for the total number of sequence families,
which contain proteins with detectable sequence simi-
larity, range from 5,000 (ref. 14) to 60,000 (ref. 15). The
number of clusters of sequence domains that share at
least 30% sequence identity with each other is several
times larger than the number of sequence families, and
is thus likely to be larger than 10,000.

Modeling leverages experimental protein
structures — a case for structural genomics
Given the clear and demonstrated usefulness of struc-
tural biology, the justification for adding structural
genomics to the traditional structural biology effort is
the efficiency of large-scale, automated, parallel and
industrialized structure determination. Thus, it is cru-
cial that the success and productivity of structural
genomics be measured quantitatively. Because structural
genomics aims to put every protein sequence within a
modeling distance of a known protein structure, appro-
priate benchmarks for structural genomics include the
number and accuracy of comparative models that can be
produced based on newly determined structures. The
new structures will increase structural characterization
in several ways. They will expand known ‘structure
space’ either by revealing an entirely new fold or by asso-
ciating a new sequence with an existing fold, and they
will enable the generation of satisfactory models for pre-
viously unsatisfactorily modeled protein sequences.

These arguments are illustrated by an automated
modeling exercise with seven structures determined by

The New York Structural Genomics Research Consortium (Table
1) (http://www.nysgrc.org/). The seven new structures defined
five new fold families that were not known at the time of target
selection. Comparative modeling with all seven structures yield-
ed useful models based on >30% sequence identity to the new
structures for segments of 172 sequences and lower accuracy
models for segments of 431 sequences in the non-redundant
protein sequence database16. Overall, the seven new structures
allowed for at least partial structural characterization of 1,039
proteins. Prior to the structural genomics effort, no structural
information was known for these 1,039 proteins. These results
highlight the power of combining experimental structure deter-
mination and comparative modeling, and strongly support the
underlying premise of structural genomics.

Depending on a genome, the fraction of the protein
sequences that have at least one segment detectably related to
one or more known structures currently ranges from 20 to 69%
(refs 13,17–23; Fig. 1). This fraction is currently growing with
an annual rate of ∼ 5–10% (Fig. 3). Approximately half of the
models are relatively inaccurate because they are based on <30%
sequence identity to the known structures. The coverage at the
level of residues or domains as opposed to whole proteins is a
factor of two smaller (Fig. 3). The relatively low coverage of
domains, its relatively low growth rate, and relatively low aver-
age accuracy of the models justify an investment into structural
genomics, in addition to the resources spent on traditional
structural biology.

Fig. 2 Applications of comparative modeling. The potential uses of a comparative
model depend on its accuracy. This in turn depends significantly on the sequence
identity between the modeled sequence and the known structure on which the
model was based. Sample models and corresponding experimental structures are
shown on the right. Reproduced with permission from ref. 34.
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Problems of protein structure modeling
Protein structure modelers and their methods are tested bi-annu-
ally at meetings on Critical Assessment of Techniques for Protein
Structure Prediction (CASP)24. Protein sequences of unknown
three-dimensional structure are modeled and submitted to the
organizers before the meeting. In parallel, the three-dimensional
structures of the prediction targets are being determined by X-ray
crystallography or NMR methods. They only become available
after the models are calculated and submitted. Thus, a bona fide
evaluation of protein structure modeling methods is possible. An
important complement to the CASP meetings is an online evalu-
ation of protein structure modeling web servers25,26. The online
evaluation has the potential benefits of a much larger number of
test structures, and of providing automatic and continuous feed-
back about the performance of the modeling servers.

To maximize the benefit of protein structure modeling for
structural genomics, further advances are necessary in recogniz-
ing weak sequence-structure similarities, aligning sequences with
structures, modeling of rigid body shifts, distortions, loops and
side chains, as well as detecting errors in a model10. Interestingly,
fold assignment would not be an important problem at the end of
the structural genomics effort, if the target selection scheme sug-
gested above applied and all structures could be determined. The
reason is that all sequences would be related trivially at >30%
sequence identity to a known structure. Thus, loop modeling and
modeling of distortions and rigid body shifts, as well as side chain
packing may be the most important challenges for protein struc-
ture modeling in the context of structural genomics. The need for
accurate methods for assessing errors in protein structure models
cannot be over-emphasized, since a model or a low resolution
experimental structure with errors may still be used profitably if
one is aware of its shortcomings.

Protein structure modeling for structural genomics must be
applicable to whole genomes. Thus, there is a need to develop an
automated, rapid, robust, sensitive, and accurate protein struc-
ture modeling pipeline. Automation makes it efficient for both
the experts and non-experts to use the models, allowing them to
spend more time designing experiments and interpreting infor-
mation. It is important that the best possible models be easily
accessible to the non-experts. Automation also encourages
development of better methods and allows the frequent recalcu-
lation of the models that is needed because of the rapid growth of
the sequence and structure databases.

In addition to making predictions, modelers are facing a more
practical challenge of making others aware of their predictions27.
Modeling methods need to be evaluated rigorously and be made

accessible over the Internet. Users of models must learn how to
interpret low-resolution and partially incorrect protein structure
models.

The functions of proteins cannot be fully understood if we con-
sider individual protein domains out of their cellular context. The
precise nature of the assembly of domains within a larger protein
is crucial, as is formation of multi-subunit complexes and tran-
sient protein–protein interactions. Because structural genomics
will emphasize high throughput, it will most likely result in struc-
tures and models only for domains, not whole proteins. Thus,
another need underlined by structural genomics is the need for
domain docking that is robust with respect to flexibility and
errors in the individual domain structures and their models. To
the degree that such methods cannot be developed, applications
of the models have to take these shortcomings into account.

Standard comparative modeling is not CPU time intensive. For
example, a typical comparative model building calculation takes
only a few minutes per model. All the operations needed for pro-
cessing the yeast genome of ∼ 6,400 proteins take only two days on
a cluster of 200 Pentium III CPUs. However, application of more
accurate, specialized methods for loop and side chain modeling is
so time consuming that it is not yet possible to apply them on the
genome scale. Another important methodological improvement,
which will also require increased computer power and better
algorithms, involves automating the cycle of alignment, model-
ing, and model evaluation for a single protein sequence10. This
approach can decrease the effect of errors in the input alignment
on the final model, but is computationally intensive, requiring
from several hours to several days of CPU time for a single target

Box 2 IBM’s ‘Blue Gene’ project
IBM recently announced a five year, $100 million initiative to
build a supercomputer 500 times more powerful than the fastest
computers available today (http://www.research.ibm.com
/news/detail/bluegene.html). The new computer, nicknamed ‘Blue
Gene’, is designed to perform more than one quadrillion
operations per second (one petaflop). This performance will be
achieved by more than one million processors, each
approximately equivalent to a desktop PC.

IBM intends to apply Blue Gene to the ab initio protein
folding problem. Its massive computing power will be needed to
develop more accurate energy functions and protein
representations, as well as to simulate molecular dynamics on a
millisecond to second time scale. In addition, due to its parallel
architecture, Blue Gene will be suited for calculations in
bioinformatics where hundreds of thousands of proteins need to
be processed essentially independently from each other.
Computers such as Blue Gene will almost certainly be rapid
enough to allow development of more accurate protein
structure prediction methods (see main text), their application
on the genomic scale, and timely updates of the models
demanded by the rapidly growing input databases of protein
sequences and structures.

Fig. 3 Simulated effect of PDB growth on fold assignment and modeling
coverage of the Mycoplasma genitalium proteins. The fraction of
sequences that have a model or a PSI-BLAST fold assignment for a seg-
ment of at least 30 residues are in green. The fraction of sequences with
a model only are in blue. The fraction of residues in the genome that
occur in a model or a PSI-BLAST fold assignment are in red. The average
fraction of a sequence that is modeled or assigned a fold is currently
48%. See Table 1 for definitions of a model and a fold assignment.
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sequence. Fold assignment by threading techniques on the
genome scale is also not yet routinely possible. In addition, the
application of long molecular dynamics simulations of a protein
in solvent, guided by a complex energy function, promises to
improve the accuracy of comparative modeling, but also at a cost
of several days of CPU time per model28,29. In summary, fast com-
puters are needed to allow development of more accurate model-
ing methods, their application on the genomic scale, and timely
updates of the models demanded by the rapidly growing databas-
es of protein sequences and structures.

Large investment in intensified development of protein struc-
ture modeling techniques is justified partly because structural
genomics as a whole is a costly effort. The large number of targets
and therefore the cost of the project could be reduced significant-
ly by a relatively small improvement in the protein structure
modeling techniques. The reasons are that: (i) the errors in mod-
els increase rapidly as the sequence identity to the known struc-
tures drops below 30% and (ii) most related protein pairs share
less than 30–35% sequence identity (Fig. 1). For example, recent
improvements of a large-scale comparative modeling pipeline13

increased the coverage of a typical genome by ∼ 20%, an effect that
is equivalent to several years of growth of the Protein Data Bank
(PDB)30 (Fig. 3). If the current average model accuracy corre-
sponding to 30% sequence identity is accepted as sufficient, a new
comparative modeling method that is capable of delivering equal-
ly accurate models based on only 25% sequence identity would
decrease the number of needed experimental structures by ∼ 25%.
On the scale of the structural genomics project, this may corre-
spond to 5,000–10,000 structures and justifies a significant
investment in the development of new modeling methods and
multi-processor computers to run these methods (see Box 2).

New applications of protein structure models
The use of individual protein structure models in biology is
already rewarding and increasingly widespread. However, just as
the availability of many protein sequences and complete
genomes made possible new and powerful methods of sequence
analysis (see, for example, ref. 31), a database of many three-
dimensional models that is complete at the level of a family,
organism, or functional network is certain to encourage new
kinds of applications. For example, a good drug target is a pro-
tein that is likely to have high ligand specificity; specificity is
important because specific drugs are less likely to be toxic. Large-
scale modeling facilitates imposing the specificity filter in target
selection by enabling a structural comparison of the ligand bind-
ing sites of many proteins, either human or from other organ-
isms. Such strategies are expected to work better than the current
approaches that are usually based on a comparison of whole pro-
tein sequences32. For example, when a human pathogen needs to
be inhibited, a good target may be a protein whose binding site
shape is different from related binding sites in all of the human
proteins. Similarly, when a human metabolic pathway needs to
be regulated, the target identification could focus on the particu-
lar protein in the pathway that has the binding site most dissimi-
lar from its human homologs.

No single experimental or computational approach is likely to
result in accurate and complete models of proteins, protein
assemblies, and pathways. Thus, a major challenge for modelers

is to integrate structural models with other types of data, such as
classical biochemical characterizations, sequence-based analyses,
proteomics, and genome scale expression data and pairwise
interaction maps.

Finally, there is hope that the protein structure prediction
methods will benefit from structural genomics in a more funda-
mental way, not only from the existence of a larger number of
templates for modeling. It is conceivable that the availability of
many experimentally determined structures will increase our
understanding of the physics and evolution of protein structures,
and finally reveal the elusive code that links protein sequence to
its structure. However, even without major conceptual or tech-
nological advances, it seems likely that we will witness a transi-
tion from knowing structures for only a fraction of all protein
sequences to having structural information for most globular
proteins within the next five to ten years.
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