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Abstract

The specific recognition of small stretches of the genomic sequence by their cognate

binding protein partners is crucial for various biological processes. Traditionally the

prediction of DNA-protein interactions has been treated as two separate problems -

one where we predict the most probable DNA sequence that a given protein would

bind  to  and  another  where  we  determine  the  amino  acids  constituting  the  DNA

binding pocket on a protein.  In this study, we introduce JEDII,  a template-based

method that combines these two aspects of DNA-protein interactions and predicts

the residues, nucleotides and amino acids, that would mediate the interaction. Our

computational  method  utilises  known  structures  of  DNA-protein  complexes  in  a

protocol  that  superimposes  amino  acid-nucleotide  hydrogen-bonding  donor  and

acceptors atoms on one another to identify the protein-DNA interface. The corner

stone of the method is that specificity bestowing hydrogen-bonding interactions are

structurally conserved. We validated the accuracy of our procedure on a dataset of

285 DNA-protein complexes where JEDII predicted the cognate DNA sequence with

a 62% accuracy. It predicted the DNA-binding amino acids on the protein with 94 %

accuracy and an MCC of 0.70. JEDII was also separately compared to other popular

methods that predict the cognate DNA sequence and to methods that predict the

DNA binding residues. The comparisons were done over four different datasets and

JEDII outperformed most methods over all these data sets. JEDII is a robust method

following a simple replicable algorithm to determine the molecular basis of  DNA-

protein specificity and could be instrumental in predicting DNA-protein complexes

that are central to key biological phenomena.
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Introduction

Many crucial cellular processes such as DNA replication (1, 2), DNA- repair  (3, 4),

transcription (5–7), regulation of gene expression (8, 9), cellular differentiation (10–

13), genome organization  (14), etc. depend on the interaction of protein and DNA.

The three-dimensional (3D) structures of the protein-DNA complexes resulting from

these  interactions  provide  mechanistic  details  of  their  function  (15–20).  These

structural  data  can  provide  information  at  the  level  of  individual  residues.  This

information from structures could help identify/rationalize the residues at the DNA-

protein interface whose disruption could lead to diseased conditions (21–23). 

The experimental determination of DNA-protein structures is time-consuming,

and the structures of all protein families are not represented. Even among the protein

families with DNA-protein complex data, the sampling of the constituent members is

not  uniform  in  the  Protein  Data  Bank  (PDB)  (24).  There  are  also  experimental

methods that provide indirect information about the DNA-protein binding interface,

such as- extensive mutagenesis combined with Electrophoretic Mobility Shift Assay

(EMSA)  (25,  26) and  crosslinking-coupled  with  mass  spectroscopy  (27,  28),

Chromatin  Immuno Precipitation  Sequencing (ChIP-Seq)  (29–32),  protein  binding

microarrays (33, 34), DNase I footprinting (35) and Systematic Evolution of Ligands

by  EXponential  enrichment  (SELEX)  (36).  However,  the  slow  progress  by

experimental  methods  in  generating  DNA-protein  interface  data  initiated  the

development of a plethora of computational methods. These methods can provide

high throughput results in a relatively short time.

The  prediction  of  the  DNA-protein  interface  has  been  treated  as  two  separate

problems. One set of  methods solely predicts the DNA-binding residues, while a

second set looks at predicting the DNA sequence recognized by a protein. 

Among  the  methods  that  predict  DNA-binding  residues,  there  are  three

classes based on the features they use to make the prediction- sequence-based,

structure-based and a combination of sequence and structural features. 

Sequence-based methods rely only on the protein sequence to predict the

binding  residues.  The  sequence-based  algorithms  employ  various  methods  for

predicting DNA-binding residues such as Support Vector Machines (SVMs) (37–44).
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neural networks  (45–50), random forest classification  (51, 52), ensemble learning

(53), deep learning (54) and other combinations of machine learning techniques (55–

63). 

Structure-based methods exclusively employ features from structural data to

predict DNA-binding residues such as electrostatics, geometry and surface curvature

(64–68). 

The final class of methods uses sequence and structural information for DNA-

binding  residue  prediction.  Since  they  incorporate  all  available  data  for  a  given

protein,  they  are  relatively  more  accurate  than  sequence  or  structure-based

methods. The methods that use both sequential and structural features are more

diverse in the techniques that they use for predicting DNA-binding residues. The

techniques include SVM (43, 69–71), ensemble learning (72), neural networks (73–

75) docking (76), clustering (77–79), light gradient boosting (80), and a combination

of machine learning and template-based techniques (81).

The above-mentioned methods have successfully predicted the DNA-binding

residues  to  various  degrees.  However,  predicting  DNA-protein  interface  not  only

involves predicting amino acid interacting partners, but also necessitates predicting

the  DNA  sequence  for  a  protein.  Most  of  the  computational  methods  for  the

prediction of DNA sequence deal with transcription factor binding sites (82, 83, 92,

84–91). These methods require a DNA sequence as an input and search for the

transcription factor binding sites within this region. However, there are also methods

that  predict  the DNA sequence for  all  DNA-binding proteins with  DNA sequence

alone or DNA and protein sequences as input (93). Some prediction tools also use

structural data as input (94–97). However, no single method identifies both DNA and

protein binding regions.

Our  proposed  method  does  not  treat  the  identification  of  DNA-protein

interface identification as separate problems and predicts the binding residues on

protein  as  well  as  DNA.  The  method  employs  topology  independent  structural

superimpositions to derive the DNA-binding interface. Ours is a template-dependent

algorithm that relies on the hydrogen bond donor-acceptor pattern similarity at the

DNA-protein interface to identify appropriate template structures. We deal with the

problem of DNA-binding interface prediction on the whole. Therefore, our method
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predicts the DNA-binding residues, binding pose, and the putative DNA sequence for

a given protein structure. To evaluate the efficacy of our method, we employed a

dataset curated by us and compared ourselves to four other datasets  (45, 68, 74,

78). We evaluated the robustness of the method in the absence of close homologs,

with unbound protein conformations and protein models as inputs. We validated the

DNA sequence prediction for a query protein, with ChIP seq data and compared the

efficacy with DBD2BS (97) and the Farrel and Guo method (96). 

Methods:

1. Dataset Curation:

The  datasets  used  for  the  prediction  of  the  DNA-binding  interface  (algorithm

described in section 2) are - 

1a) Query Dataset

We followed the steps below to construct the query dataset -

i) We obtained 3467 DNA-protein complex structures from RCSB PDB (98) by using

the following parameters - 'Molecule Type=complex, Experimental Method=X-RAY,

and Chain Type: there is a Protein, and a DNA chain but not any RNA or Hybrid and

Resolution is between 0.0 and 3.0 Å.' (April 2018).

ii)  To  avoid  over-representation  of  protein  families,  we  compiled  a  40%  non-

redundant set using h-CD-HIT. Multiple iterations result in more efficient and more

accurate clustering (99). Therefore, we performed three iterations at 90,60 and 40%

identity, which resulted in 669 clusters. 

iii)  We  identified  DNA-protein  hydrogen  bonds  for  each  structure  in  all  the  669

clusters using an in-house python script. The maximum distance between donor and

acceptor atoms was 4Å, and the angle between donor-acceptor-acceptor antecedent

was between 90-180°  (100). We chose a permissive (larger)  distance cutoff  and

angle range to include all potential hydrogen-bonded amino acid-nucleotide pairs. 

The cluster representative was the structure with the maximum number of

DNA-protein hydrogen bonds in a chain. Wherever there were multiple chains with
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maximum hydrogen bonds, the structure with the higher total number of hydrogen

bonds (all  chains included) was chosen. If  two or more structures had the same

number of overall hydrogen bonds, the structure with the better resolution was the

representative.  From 669 clusters,  we removed 81 clusters  with  no  DNA-protein

hydrogen bonds, which left us with 588 clusters with 588 representative structures.

iv)  In  this  study  we  only  considered  the  classical  conformation  of  DNA (B-form

double helix). Thus, we removed 166 structures after screening for double-stranded

B-form DNA using Nucleic Acid Database (NDB), resulting in 422 structures (101).

NDB missed filtering out some entries that did not belong to the double-stranded B-

form DNA category.  We wanted to  include only  the DNA-protein  complexes that

exhibited DNA-sequence-specific binding since our method also predicts the DNA

sequence recoognized by the protein. Therefore, we did keep structures that had

non-specific DNA-binding activity, such as polymerases. We manually curated the

entries to remove both these types of structures by text mining and visualization of

the DNA-protein complexes. The final dataset consisted of 285 structures, which we

termed the PDNA-285 dataset.

Four  of  the  structures  in  the  PDNA-285  dataset  contained  heteromeric

proteins interacting with DNA, and therefore the dataset has 289 unique proteins. In

homo-oligomeric  protein  assemblies,  we retained unique chains  if  they had non-

overlapping binding sites (The PDB IDs and chains used in the PDNA-285 dataset

are mentioned in Supplementary Table 1).

1b) Template dataset

The template database consisted of only X-ray crystal structures having a resolution

better than 3Å and composed only of DNA and protein chains that resulted in 3909

structures  (May  2020).  Wherever  rotational  data  was  present,  we  performed

symmetry operations and used the biological unit of these structures. We obtained a

40% NR template database with 700 sequences using these 3909 PDBs as input to

h-CD-HIT  to  assess  the  performance  of  our  method  in  the  absence  of  close

homologs in the template dataset.
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1c) Benchmark datasets

We  validated  the  prediction  of  amino  acids  binding  DNA  using  datasets  from

previous studies- PDNA-62  (45) dataset, PDNA224  (71),  ,  PDNA-129  (74), HOLO-

APO 82 (78), where the numbers in the dataset name indicate their size.

For the validation of DNA-sequence prediction, apart from the PDNA-285 dataset,

we have used three datasets-

i) A set of 7 proteins used by DBD2BS in their study.

ii) Position Weight Matrices (PWMs) generated by ChIP seq data from JASPAR for

comparison with the predicted DNA sequence  (102). JASPAR had 331 entries for

PWMs, of which 72 had a three-dimensional (3-D) protein structure. These proteins

did not possess a 3-D structure in complex with the DNA and formed the validation

set for DNA sequence prediction.

iii) 27 Transcription factor chains from the Farrel and Guo study (96): Their dataset

had 27 protein chains, which bound as monomers to their binding site. We obtained

the PWMs for each of these proteins from JASPAR. We selected the nucleotide with

highest frequency at each position to generate reference DNA sequences against

which we evaluated our method.

1d) Validation using models

All previously described validations used crystal structures extracted from the PDB.

We wanted to evaluate the efficacy of our prediction method when using models of

of proteins instead of their experimentally determined structures. To this end, we

constructed  models  of  the  proteins  in  the  PDNA-129  dataset  separately  using

MODELLER (103) and AlphaFold2 (104). 

For  generating  models  with  MODELLER,  we  used  the  protein  with  the  best

sequence identity with the query excluding the crystal structure as the template for

modelling.  We obtained  122  models  as  seven  sequences  did  not  find  alternate

templates.  We  analyzed  the  TM-score  of  these  122  models  using  TM-align  to

ascertain their similarity to the experimental structures (105). 97 of the 122 models

had a TM-score >0.5, where a higher TM-score indicates greater structural similarity.

We also modeled the sequences from PDNA-129 using AlphaFold2 (using either the
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AlphaFold2 database or modelling with the google colab notebook). 127 of these 129

sequences have a TM-score >0.5.

2. Prediction Algorithm

The prediction algorithm relies on the similarity of the hydrogen bond pattern

at  the  interface of  DNA-protein  interactions.  We used hydrogen bond donor  and

acceptor atoms in protein residues to guide structural alignments using CLICK (106,

107). The hydroxyl group in serine, threonine and tyrosine can act as both donor and

acceptor. As a practical consideration, we treated this group as a donor in this study,

since it acts as a donor in 70% of cases in the PDNA-285 dataset. We used default

CLICK  settings  to  align  the  query  structure  with  all  structures  in  the  template

database (except  for  the  same PDB structure).  The default  settings  use solvent

accessibility and secondary structure parameters for alignment.

The DNA coordinates of the template were transferred to the superimposed

query to build a model. To remove unsatisfactory models, we used the criteria of

clashes and contacts. A clash was defined as a distance less than 1.5 Å between the

C, Cα atom of the protein, and the DNA atoms. We discarded all models with more

than one clash. 

The O and N atoms of the main chain are not explicitly considered in the

checking  of  clashes  as  these  atoms  are  hydrogen  bond  acceptors  and  donors,

respectively. Our method involves the superimposition of the query with a template

and the subsequent  transfer of  coordinates of  the DNA to form the DNA-protein

complex. This complex is not energy minimized or processed in any other way after

superimposition.  The clash criteria is the only means of  eliminating possible  bad

models. This is also why the clash criteria is somewhat permissive (1.5 Å threshold,

instead of a larger value). In addition, we have also made the hydrogen bond criteria

permissive as we are allowing all donor-acceptor distances below 4  Å. Potentially

these could include clashes (below 1.5 Å) - but we observed that this occurs in ~1%

of the N and O atoms in the data (Appendix 19). With these permissive hydrogen

bond and clash criteria, we believe we can identify all plausible hydrogen-bonded

pairs.

A  contact between DNA and the protein consisted of a distance less than 3.5 Å
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between the hydrogen bond donor/acceptor atoms of protein and DNA. We removed

the models with less than three contacts between DNA and protein. 

To  select  the  best  model,  we  define  a  term  called  the  query  overlap

percentage -

%QueryOverlap=100∗(n
t
)                                                                                  Eq.1 

where  n is  the  number  of  donors  and  acceptors  in  the  query  protein

superimposed with the template and t is the total number of donors and acceptors in

the query protein. We predicted the model with the highest query overlap as the

putative binding pose. The DNA-binding residues were the amino acid residues with

any atoms within a distance of 4 Å from any DNA atom. We predicted the DNA

sequence of the template as the putative nucleotide sequence that the protein would

bind.  We  labeled  this  protocol  of  predicting  the  DNA-binding  interface  as

Juxtaposition  Enabled  DNA-binding  Interface  Identifier  (JEDII)  (Figure  1).  We

demonstrated the efficacy of JEDII using PDNA-285 dataset and validated it using

the different benchmark datasets.
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Figure 1: Flowchart of the steps in the JEDII protocol

3. Comparison of JEDII with GraphBind and HDock on PDNA-285 

dataset

We compared the performance of JEDII with GraphBind (74) and HDock (108, 109)

on the  PDNA-285 dataset.  We used the GraphBind standalone version to  make

predictions on proteins from the PDNA-285 dataset. Out of 285 PDBs in our dataset,
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107 are a part  of  the GraphBind training set.  Therefore,  we predicted the DNA-

binding residues for  the remaining 178 proteins.  We  parallelized GraphBind jobs

using  GNU  Parallel  (110).  For  predictions  using  HDock,  we  docked  the  DNA

structure from PDB ID 6EL8 on each of the proteins in the dataset and predicted the

residues within 4 Å of the DNA in the top model as the DNA-binding residues. 

4. Evaluation Metrics

We evaluated the predictions of amino acid residues binding DNA using Matthew’s

Correlation Coefficient (111) (MCC), Specificity (SP), Sensitivity (SN), Precision (P),

Accuracy (Acc) and F1 score. We have reported values in % for SP, SN, P and Acc.

MCC= (TP∗TN )− (FP∗ FN )
√(TP+FP)(TP+FN )(TN+FP)(TN+FN )

                                                            Eq2

Where, TP = true positive (predicted binding residue correctly), 

             TN= true negative (predicted non-binding residue correctly), 

             FP= false positive (predicted a non-binding residue as a binding residue),

             FN= false negative (predicted a binding residue as non-binding).

SN= 
TP

(TP+FN )                                                                                                                     Eq3

SP= 
TN

(TN+FP )                                                                                                                     Eq4

P= 
TP

(TP+FP )                                                                                                                        Eq5

Acc= 
TP+TN

(TP+TN+FP+FN )                                                                                                    Eq6

F1= 2∗(P∗R)
(P+R)

                                                                                                     Eq7

In the JEDII protocol, we selected the template DNA sequence as the sequence of

the DNA likely to bind the input protein. To evaluate the prediction, we aligned the

predicted  sequence  and  the  actual  sequence  using  the  malign  module  of

MODELLER. We then calculated the similarity score as -
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maln
LDNA

                                                                                                                    Eq8

where maln is the number of matched nucleotides and LDNA is the length of the actual

DNA sequence.

Results:

1. Assessment of the robustness of JEDII in predicting the DNA-protein 

interface 

A) Performance on the PDNA-285 dataset: 

We predicted the  DNA-binding interface for  the  proteins  in  the  PDNA-285

dataset.  We have segregated the prediction of the DNA-protein interface into the

predictions of amino acid residues binding DNA and the prediction of DNA sequence

that  would  bind  the  protein.  In  each  section,  we  have  described  the  results  for

predicting  amino  acid  residues  binding  DNA,  followed  by  the  DNA  sequence

prediction. 

From the predicted DNA-protein model for each query protein, we annotated

all the amino acid residues within 4Å of the DNA as the DNA-binding residues. Using

this criterion, JEDII achieved an overall accuracy of 94% and an MCC of 0.70 on this

dataset (Table 1). The MCC for the dataset shows a bimodal distribution with one

maxima at 0 and another at 0.9 (Figure 2 (a)). 

We evaluated  two  factors  contributing  to  the  performance  of  the  method-

query  overlap  and  sequence  identity  between  the  template  and  the  query.  We

plotted these parameters in the PDNA-285 dataset against the MCC (Figure 2(b) and

2(c)). The average query overlap was 49.1± 32.5%, while the average sequence

identity between template-query was 59.1 ± 34.6 %. The query overlap exhibits a

stronger positive correlation with the MCC (Spearman’s correlation Coefficient= 0.84)

than  the  sequence  identity  between  the  template  and  the  query  (Spearman’s

correlation Coefficient=0.60).

(a)

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 20, 2022. ; https://doi.org/10.1101/2022.05.19.492702doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.19.492702


Table 1: Performance of JEDII on PDNA-285 dataset with redundant and 40% non-

redundant  template  database.  The  terms  Acc,  MCC,  SN,  P  and  F1  stand  for

Accuracy,  Matthew’s  Correlation  Coefficient,  Sensitivity,  Precision  and  F1  score,

respectively. 

Method Dataset Acc (%) MCC SN (%) SP (%) P (%) F1

JEDII Redundant 94 0.70 65 98 84 0.73

JEDII NR-40 90 0.45 38 97 66 0.48

(a)

(b)

(b)
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Figure 2: Performance of JEDII on the PDNA-285 dataset Subplots (a), (b) and (c)

show  MCC  distribution,  variation  in  MCC  with  query  overlap  (%)  and  average

sequence  identity  between  template-query  (%),  respectively  for  the  prediction  of

DNA-binding residues. (d) is the distribution of similarity score for the DNA-sequence

prediction.

(d)

(c)
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87.5% of the perfectly-identified binding sites (49 out of 56) have a template identity

>90%. Among the remaining seven proteins with a DNA-binding residue prediction of

1, the lowest sequence identity between the template and query was 25.6% (PDB

ID: 1R8D). Moreover,  in 14 PDBs with MCC  ≥ 0.4,  the template selected had a

different CATH (112, 113) fold from the query.

JEDII  had  an  average  similarity  score  of  0.62  for  predicting  the  DNA

sequence  on  the  PDNA-285  dataset  (Figure  2  (d)).  For  62  out  of  289  unique

proteins, we could identify the DNA sequence with a similarity score of 1.

An example of the identifying the correct DNA-protein interface with a sequentially

and structurally different template is that of the cro repressor.

Figure  3:  The  prediction  of  the  binding  pose  of  cro  repressor.  The  query  and

template proteins are in salmon and blue color, respectively. The query and template
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DNA are depicted in green and grey, respectively. (a) Structure of the query protein.

(b) Structure of the template DNA-protein complex. (c) Structure of the predicted

model. (d) Relative orientation of the DNA in the model and crystal structure of the

query  protein  with  DNA.  (e)  Superimposition  of  the  query  and template  proteins

using hydrogen bond donors and acceptors.  (f)  A  section  of  the hydrogen bond

donor/acceptor atoms of query (salmon) and template (blue) protein superimposed

and the corresponding alignment of proteins. The amino acid residues with the same

identity are highlighted in red.

We predicted the DNA-binding pose and the DNA sequence for cro repressor of

bacteriophage lambda (PDB ID:  6CRO).  The template  selected by JEDII  was  cI

protein of bacteriophage lambda (PDB ID: 1RIO), which had a sequence identity of

31% with the cro repressor. The two proteins have different CATH IDs – 3.30.240.10

(6CRO),  and  1.10.260.40,1.10.10.10  (1RIO)  and  the  superimposition  occurs

between atoms in an α helix (cl) and atoms in a β sheet (cro repressor) (Figure 3).

The predicted and the actual binding pose have the angle between the helical axis

as 18.22° and the RMSD as 0.78Å. The MCC for the DNA-binding residue prediction

is 0.9, and when compared with the DNA sequence in the experimental structure, the

predicted DNA sequence has 14/16 nucleotides matched (0.87 similarity score).

B) Predictions in the absence of close homologs

We have established in A) that the accuracy of predictions is correlated with

the query overlap (0.84) and the sequence identity (0.60) between template-query.

However, sequential similarity also implies structural similarity, resulting in a better

overlap  of  the  query  protein.  Therefore,  we  wanted  to  assess  the  method’s

robustness in the absence of close sequential homologs. We used 700 protein-DNA

complexes from the NR-40 database as templates to make predictions for proteins in

the  PDNA-285  dataset.  The  accuracy  of  the  method  for  DNA-binding  residue

prediction reduces to 90.0%, with an MCC of 0.45 (Table 1). We can still identify

DNA-binding residues of 4 query proteins with an MCC of 1. The correlation between

the MCC and the template-query sequence identity is -0.05, while that between MCC

and % query overlap is  0.67.  Therefore,  in  the absence of  close homologs,  the
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identification of DNA-binding residues relies on the structural similarity of the DNA-

binding interface.

Without close sequential homologs in the template dataset, the prediction of

the DNA sequence has an average similarity score of 0.40. Though there has been a

reduction in the accuracy, JEDII  could identify the DNA sequence for one of the

query proteins (PDB ID: 5GZB) with a similarity score of 1.

C) Predictions with the unbound conformation of protein:

We employed the HOLO-APO 82 dataset to estimate the efficiency of our

method when provided with the unbound conformation of DNA. This dataset consists

of  82  pairs  of  proteins  in  both  apo  (DNA-unbound)  and  holo  (DNA-bound)

conformation. The accuracy of the method for DNA-binding residue prediction is 95%

and 93% for holo and apo conformation, respectively. The MCC of JEDII on the holo

conformation is 0.67, while for the apo conformation, it is 0.55 (Table 5). In only 17

out of 82 cases, JEDII identified the corresponding holo-structure as the template.

The  average  RMSD  between  apo  and  holo-structures  was  1.2Å  irrespective  of

whether JEDII identified the holo-structure as a template or not. 

We studied the effect of the degree of conformational change on the efficacy

of the method using correlations. We correlated the RMSD between the apo and

holo-structures with the MCC of amino acid residues binding DNA. The Pearson’s

correlation Coefficient for these two parameters was -0.08, indicating that the MCC is

independent  of  the  degree  of  conformational  change.  The  better  MCC for  holo-

structures  could  be  due  to  their  similarity  with  the  structures  of  DNA-protein

complexes in the template database.

JEDII had an average similarity score of 0.66 for predicting the DNA sequence on

both the apo and holo datasets. Out of 82 sequences, the crystal  structure DNA

sequence was precisely identified (similarity score = 1) in 23 and 30 cases in holo

and apo datasets, respectively. 
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D) Dependence of the accuracy on the use of models:

We assessed the ability of our method to identify DNA-binding interface using

models generated by MODELLER and AlphaFold2 from the protein sequences in the

PDNA-129 dataset. The MCC values for the prediction of amino acids binding DNA

on models built by MODELLER and AlphaFold2 are 0.32 and 0.33. Thus JEDII has

an  equivalent  performance  on  both  MODELLER  and  AlphFold2  models  (with

AlphaFold2 having a marginally better performance). 

In the case of DNA sequence prediction with models as inputs, JEDII has a

similarity  score of 0.41 on MODELLER models and 0.40 on AlphaFold2 models.

Perfectly identified DNA sequences (similarity score =1) are 6 and 7 for MODELLER

and AlphaFold2 models, respectively.

2. Comparison of results with other methods on benchmark datasets:

We wanted to assess the accuracy of our method in comparison to other existing

algorithms. However, no software performs both functions of predicting amino acids

binding DNA and DNA-sequence prediction. Therefore we compared JEDII with the

different classes of methods separately.

A) Predicting amino acid residues binding DNA

A1) Comparison with other methods on benchmark datasets

 We employed PDNA-62, P224 and PDNA-129 datasets that have been used in

previous  studies  to  analyze  the  performance  of  JEDII  on  DNA-binding  residue

prediction. We also compared the accuracy of JEDII with other methods on the APO-

HOLO82  dataset  and  on  models  built  from  sequences  derived  from  PDNA-129

dataset.

We have compared JEDII to sequence-based methods (ADASYN, BindN, BindN-RF,

BindN+,  CNNsite,  DBS-Pred,  DBS-PSSM,  DNAPred,  DRNAPred,  EL_PSSM-RT,

SVMnuc, TargetDNA, TargetS), structure-based methods (COACH-D) and methods
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that use a combination of both sequence and structural features (DNABind, DP-Bind,

GraphBind, NucBind, PDNAsite, PDRLGB, PreDNA, RBSCORE). We obtained the

values for all evaluation metrics from the respective papers for all methods except

GraphBind. In case of GraphBind, the program was run on models from PDNA-129

and on the 178 proteins from PDNA-285 dataset. 

On both the PDNA-62 and P224, we perform better than all other methods in every

assessment measure except sensitivity (Table 2 and Table 3). On the PDNA-129

dataset,  we perform better than or at par with most methods, except GraphBind.

GraphBind performs better than JEDII in all  measures except precision (Table 4).

The PDNA-129 dataset contains 27 entries that have been solved using electron

microscopy.  Since  our  template  database  only  has  DNA-protein  complexes  with

resolution  <4  Å,  we  have  a  worse  performance  on  this  dataset  compared  to

GraphBind.

JEDII performs better on the HOLO-APO 82 dataset as compared to other methods.

(Table  5).  While  on  the  holo  dataset,  JEDII  outperforms  other  methods  in  all

evaluation parameters, in the apo dataset, it has lower F1 and sensitivity compared

to JET2DNA.

We compared  the  prediction  of  DNA-binding  residues  from protein  models  with

GraphBind. We used the models built by MODELLER and AlphaFold2 for evaluation.

On  both,  the  models  built  by  MODELLER  and  AlphaFold2,  JEDII  has  a  better

accuracy, specificity and precision but GraphBind has better MCC and F1 values

(Table 6). This trend holds even when we only consider the models that have TM-

score >0.5. 
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Table 2: Comparing JEDII with existing algorithms on PDNA-62 Dataset. Values for

BindN  (37),  BindN-RF  (51),  BindN+  (38),  DBS-Pred  (45),  DBS-PSSM  (46),

EL_PSSM-RT (53), DNABind (81), DP-Bind (56), PDNAsite (72), PDRLGB (80) and

PreDNA (71) were taken from their respective papers. The terms Acc, MCC, SN and

SP stand for Accuracy, Matthew’s Correlation Coefficient, Sensitivity and Specificity,

respectively. 

Methods Acc (%) MCC SN (%) SP (%)
Sequence-based

BindN 70 - 69 70
BindN-RF 78 - 78 78
BindN+ 79 0.44 77 79

DBS-Pred 79 - 40 82
DBS-PSSM 66 - 68 66

EL_PSSM-RT 81 0.51 85 80
Sequence+ Structure-based

DNABind - 0.57 82 -
DP-Bind 78 0.49 79 77

PDNAsite 85 0.58 86 85
PDRLGB 81 0.52 86 81
PreDNA 83 0.50 80 84

Structure-based
JEDII 91 0.64 72 94
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Table 3: Comparing JEDII with existing algorithms on the P224 Dataset. The values

for ADASYN (49), CNNsite (50), EL_PSSM-RT (53), PDNAsite (72), PDRLGB (80),

PreDNA (71) and RBSCORE (79) were obtained from their respective papers. The

terms Acc, MCC, SN and SP stand for Accuracy, Matthew’s Correlation Coefficient,

Sensitivity and Specificity, respectively. 

Method Acc (%) MCC SN (%) SP (%)
Sequence-based

ADASYN 83 0.48 77 84
CNNsite 84 0.40 77 84

EL_PSSM-RT 78 0.34 80 78
Sequence + Structure-based

PDNAsite 82 0.40 83 82
PDRLGB 80 0.38 83 80
PreDNA 82 0.35 76 82

RBSCORE 85 0.40 63 88
Structure-based

JEDII 94 0.66 68 97
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Table 4: Comparing JEDII with existing algorithms on the PDNA-129 dataset. Values

for  DNAPred  (39),  SVMnuc  (43),  TargetDNA  (44),  TargetS  (63),  DNABind  (81),

GraphBind (74), NucBind (43) and COACH-D (64) were taken from their respective

papers.  The  terms  Acc,  MCC,  SN,  P  and  F1  stand  for  Accuracy,  Matthew’s

Correlation Coefficient, Sensitivity, Precision and F1 score, respectively. 

Method MCC SN (%) P (%) F1
Sequence-based

DNAPred 0.33 40 35 0.37
SVMnuc 0.30 - 37 0.34

TargetDNA 0.29 42 28 0.34
TargetS 0.26 24 37 0.29

Sequence+ Structure-based
DNABind 0.41 60 35 0.44

GraphBind 0.50 68 42 0.52
NucBind 0.31 - 37 0.35

Structure-based
COACH-D 0.30 - 36 0.34

JEDII 0.41 42 47 0.45
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Table 5: Comparing the performance of JEDII on the HOLO-APO 82 dataset with

other methods.*iJET2 has divided the holo set to two parts (74 and 8 proteins) based

on  the  stoichiometry.  For  comparison,  we  have  used  the  average  value  of  the

evaluation  metrics.  Values  for  iJET2  (78),  DRNAPred  (58),  DISPLAR  (73) and

MultiVORFFIP (76) were taken from their respective papers. The terms Acc, MCC,

SN, SP, P and F1 stand for Accuracy, Matthew’s Correlation Coefficient, Sensitivity,

Specificity, Precision and F1 score, respectively. 

Method Dataset Acc (%) MCC SN (%) SP (%) P (%) F1

Holo

Sequence + Structure-based

iJET2 * 84 0.50 60 91 61 0.59

Structure-based 
JEDII 95 0.67 67 98 74 0.70

Apo

Sequence-based

DRNApred 85 0.21 23 95 40 0.24

Sequence + Structure-based

DISPLAR 87 0.39 41 94 54 0.43

IJET2 * 88 0.52 63 92 58 0.59
MultiVORFFIP 87 0.45 44 95 64 0.5

Structure-based

JEDII 93 0.54 51 97 65 0.57
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Table  6:  Comparing  the  accuracy of  JEDII  on  models  built  by  MODELLER and

AlphaFold. # indicates models with TM-scores >0.5. The values for GraphBind were

obtained by running the standalone version  (74). The terms Acc, MCC, SN, SP, P

and F1 stand for Accuracy, Matthew’s Correlation Coefficient, Sensitivity, Specificity.

Precision and F1 score, respectively. 

Method Dataset
Modelling

Software
Acc (%) MCC SN (%) SP (%) P (%) F1

GraphBind
PDNA-122

MODELLER

89 0.39 58 92 34 0.43
JEDII 92 0.32 31 96 40 0.36

GraphBind
PDNA-97# 90 0.46 64 93 40 0.49

JEDII 92 0.37 38 96 44 0.41
GraphBind

PDNA-129
AlphaFold2

91 0.36 47 94 33 0.39
JEDII 92 0.33 33 96 40 0.36

GraphBind
PDNA-127# 

91 0.36 48 94 35 0.41
JEDII 92 0.33 34 96 41 0.37

A2) Comparison with other methods on the PDNA-285 dataset

For comparison of our accuracy, with other methods on the PDNA-285 dataset, we

used GraphBind and HDock. JEDII performs better than GraphBind and HDock on

the PDNA-285 dataset in all measures except sensitivity, where GraphBind is better

(Table 7). Overall, except for PDNA-129, JEDII has a better performance than other

sequence-based, structure-based and methods using both sequence and structure

data.  We  consistently  have  a  better  specificity  than  other  methods,  however

sensitivity of the method is one of the limitations of the method.
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Table 7: Comparing JEDII with GraphBind and HDock on PDNA-285 dataset. * As

mentioned  in  the  methods,  predictions  were  made  for  178  proteins  not  in  the

GraphBind training set. The terms Acc, MCC, SN, SP, P and F1 stand for Accuracy,

Matthew’s Correlation Coefficient,  Sensitivity,  Specificity.  Precision and F1 score,

respectively. 

Method Dataset Acc (%) MCC SN (%) SP (%) P (%) F1

GraphBind PDNA-285* 92 0.69 86 93 63 0.73

HDock PDNA-285 91 0.55 49 97 72 0.58

JEDII PDNA-285 94 0.70 65 98 84 0.73

B) DNA sequence prediction

B1) Validation of DNA sequence prediction on ChIP seq data

ChIP seq experiments  generate DNA-binding  sequence data  for  proteins,  that  is

generally stored as PWMs in databases such as JASPAR. We took 72 proteins from

JASPAR that did not a structure in complex with DNA, but had a structure of the

protein to assess the accuracy of JEDII in DNA sequence prediction. To derive the

DNA-binding site, we expanded the PWMs to individual sequences that satisfy the

PWM criteria. When we compared the DNA sequence predicted by JEDII with the

sequences from PWM, we obtained an average similarity score was 0.81 (Figure 4). 
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Figure 4: Distribution of motif similarity score in ChIP-seq dataset

B2) Comparison with DBD2BS

For comparison of DNA-sequence prediction we used DBD2BS, which generates a

PWM for a given protein structure based on knowledge-based potentials (97). The 7

proteins that  they have used are in their  unbound conformation with an average

RMSD of 1.1 Å. We have an average similarity score of 0.51 on this dataset. Since

JEDII outputs a single DNA sequence and DBD2BS outputs a PWM, we could not

compare the two methods directly. Therefore, we used their definition and compared

the  number  of  times  the  highest  occurring  nucleotide  in  the  PWM  is  correctly

predicted (Table 7). JEDII has a better performance than DBD2BS in 4 cases. In 1

case the number of correctly matched positions is the same for both methods, while

in 2 of the 7 cases, DBD2BS performs better than JEDII.
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Table 8: Number of nucleotide positions where the predicted nucleotide also had the

highest frequency of occurrence in JEDII and DBD2BS. 

Sr. No PDB ID JEDII DBD2BS
1 1NFI 5/10 5/10
2 1MI7 9/19 5/19
3 2A63 13/17 7/17
4 1M6U 3/12 6/12
5 1GV2 4/11 5/11
6 1MH3 7/18 6/18
7 2GZW 9/10 5/10

 

B3) Comparison with the Farrel and Guo method

Though DBD2BS is the only algorithm that predicts the binding site for a given

protein, there are other algorithms, which are specific for transcription factors. One

such algorithm was developed by Farrel and Guo (96). They also predict PWMs from

a  protein  structure,  however  instead of  a  template-based  algorithm,  they  use  a

fragment-based method to generate a complex of a transcription factor with DNA.

The sequence of DNA is then generated using permutations and combinations and

evaluating each sequence with an energy function to output a PWM. 

They evaluate the number of positions in the PWM that they have correctly

predicted.  We used this  measure  to  compare  the  method with  JEDII  on  the  27

protein chains they have used in their study.  JEDII achieved an average similarity

score of 0.62, while the Farrel and Guo method had a similarity score of 0.53. We

performed better than Farrel  and Guo in 18 out of 27 cases. In two cases, both

methods had the same similarity score and in 7 cases the Farrel and Guo method

had a better similarity score than JEDII (Figure 5).
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Figure 5: Comparison of JEDII with Farrel and Guo’s study on 27 transcription factor

chains. The y-axis shows the similarity score for each chain mentioned on the x-axis.

The similarity scores for JEDII and the Farrel and Guo method are depicted in blue

and  orange,  respectively.  The  Farrel  and  Guo  method  had  three  algorithms  for

scoring. The best prediction for each protein chain was considered.

Discussion:

This study proposes an algorithm to predict the DNA sequence that would

specifically bind a given protein structure. The method involves the superimposition

of hydrogen bond donors and acceptors in the query protein against a dataset of

known  DNA-protein  complexes.  Hydrogen  bonds  are  the  most  significant

contributors to DNA-protein specificity  (114–116).  Therefore, we hypothesized the

conservation of the orientation of hydrogen bond donors and acceptors in different

DNA-binding proteins. Hence, the algorithm relies on the maximum match between

the hydrogen bond donors and acceptors of the query and the template for template

selection. We know that the protein region at the interface is complementary to the

DNA. Therefore, if the query protein has matched well with the template protein, the

DNA sequence of the template would also match with that of the query. Thus, we

predict the DNA sequence of the template as the putative DNA sequence of the

query.

We curated the PDNA-285 dataset to obtain only the protein-DNA complexes

that exhibit sequence-specific binding. We used this dataset to test our hypothesis

that the orientation of hydrogen bond-donor acceptor atoms shows conservation in
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specific DNA-protein complexes. The performance of JEDII is highest on the PDNA-

285 dataset, lending credence to our hypothesis.

The MCC distribution of JEDII on the PDNA-285 dataset has a bimodal shape

with  peaks  near  0  and  0.9.  The  sensitivity  value  is  reflective  of  this  distribution

pattern.  If  we identify  the  optimal  template,  JEDII  can  predict  the  interface very

accurately, while the binding site is completely missed in the other cases. We could

identify the DNA sequences with an average similarity score of 0.62 on the PDNA-

285 dataset. While we could identify the DNA-binding residues in 56 proteins with an

MCC of 1, we obtained a similarity score of 1 for the DNA sequence prediction in 62

proteins. This implies that even though the DNA-binding pose may differ  slightly,

affecting the prediction of DNA-binding residues, our method can identify the DNA-

protein interface correctly. 

We analysed the contribution of the query identity and the average sequence

identity between the template and query towards the MCC. Spearman’s correlation

Coefficient was high for both parameters. However, the correlation with the query

overlap  was  comparatively  higher.  Thus,  JEDII  tends  to  perform  better  in  the

presence of homologous structures bound to DNA.  However,  the performance is

more  dependent  on  the  accuracy  of  the  alignment  between  the  query  and  the

template proteins. To understand the contributions of the sequence identity between

template-query, we employed the 40% NR template database to make predictions

on the proteins from PDNA-285 dataset.

With the 40% NR template dataset, there was a reduction in MCC from 0.70

to 0.45. However, there were still 4 query proteins with an MCC of 1. The correlation

between the MCC and the template-query sequence identity reduced to -0.05 from

0.60 with the 40% NR template dataset. However, the correlation between the MCC

and the query identity remained high at 0.67. Therefore, in the absence of close

homologs, the identification of DNA-binding residues relies on the structural similarity

of the DNA-binding interface. There was a reduction in the efficacy of identification of

the DNA sequence with the 40% NR template dataset. Since JEDII is a template-

based method, a reduction in efficacy in the absence of close homologs was an

expected outcome. 

However, unlike other methods, there are examples where JEDII has a good
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performance without close sequential templates. One such example is that of the cro

repressor. The selected template has a sequence identity of 31%, and the query and

template have different CATH folds. Despite these differences, JEDII predicts  the

DNA-binding residues, DNA-binding pose and the predicted DNA sequence of the

cro  repressor  protein  with  high  accuracy.  However,  making  uniformly  good

predictions in the absence of close homologs, needs improvements on the current

algorithm. We plan to incorporate nucleotide changes based on the nucleotide-amino

acid specificity rather than just relying on the geometric similarity of the interface.

Another evaluation of robustness was to check the performance of JEDII on

unbound  DNA-binding  protein  conformations.  Previous  studies  have  noted  a

conformational  change  in  both  DNA  and  proteins  when  they  interact  to  form  a

complex  (117,  118). Most  of  the  studies  utilizing structural  information to  predict

DNA-binding  residues look at  the  conformation  of  the  protein  in  the  DNA-bound

state. 

However, the aim of developing these methods is for the DNA-binding residue

predictions of proteins that do not have a DNA-bound conformation. Thus, it would

influence the accuracy of the methods in cases where conformations differ in the

bound and unbound states.  We used the APO-HOLO 82 dataset  to analyze the

performance of JEDII. While the accuracy does not change significantly with either

apo or holo-structures as inputs, the MCC values are lower for the apo structure

(0.55)  compared to the holo-structure (0.67).  Despite the conformational  change,

JEDII  can identify  17/82 or 20% of the holo-structures as the templates for their

respective apo structures, which points to its robustness. 

The DNA sequence prediction is also unaffected with apo or holo-structures

as  inputs,  with  both  giving  a  similarity  score  of  0.66.  The  identification  of  DNA

sequence may have an advantage with the apo structure. JEDII identified the exact

DNA sequence in 23 out of 82 cases using the holo-structure as query, while this

number increased to 30 with the apo structure as input. The overall similarity score is

the  same  for  apo  and  holo,  indicating  that  the  selected  templates  for  the  holo

structure have more near-native identifications than the apo protein. 

We speculate  that  the  template  database does not  have many  structures

similar to apo conformations. Thus if JEDII identifies the appropriate template, the
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DNA sequence matches perfectly. Otherwise, the similarity score is low. When we

compare  the  performance  of  JEDII  with  other  methods  on  this  dataset,  we

outperform the existing methods on both datasets.

We  can  also  obtain  the  unbound  conformation  of  a  DNA-binding  protein

through protein models. Especially with the development of AlphaFold2, there has

been  improvement  in  obtaining  near-native  conformations  of  proteins  (104).

Therefore, we tested the robustness of JEDII on models. While JEDII has a worse

performance  on  both  MODELLER  and  AlphaFold2  models  than  experimentally

determined  structures,  the  performance  is  slightly  better  with  AlphFold2  models.

This could be because AlphaFold2 models have more models with TM-scores >0.5

and also better average TM-score. Moreover, the RMSD between hydrogen bond

donor and acceptor atoms, which are used for superimposition,  is also lower for

AlphaFold2 models. 

GraphBind has a better performance with respect to MCC, sensitivity and F1

score when compared to JEDII while making predictions with protein models. This

holds true for experimentally determined structures of the PDNA-129 dataset and

models  from  this  dataset.  The  PDNA-129  dataset  contains  27  proteins  whose

structures have been determined by electron microscopy and the average resolution

of these structures is 4.4Å. Since JEDII relies on finding appropriate templates using

hydrogen bond-donor acceptor superimposition, the comparatively poor resolution

may hinder the prediction accuracy. The template dataset, which is curated from X-

ray crystal structures may also not have structures that resemble the proteins solved

by  electron  microscopy.  Therefore,  future  improvements  to  JEDII  could  involve

incorporation of evolutionary information to overcome the lack of structural data.

While JEDII is a valuable tool, we wanted to compare its performance with the

existing methods. Since no single method can predict both the DNA-binding residues

and the DNA sequence, we compared the two kinds of predictions separately. For

the  DNA-binding  residue  prediction  comparison,  we  used  PDNA-62,  P224  and

PDNA-129  benchmark  datasets.  We  perform  better  than  other  methods  on  the

PDNA-62 and P224 datasets but not on the PDNA-129 dataset, on which GraphBind

is  better.  We  suspect  GraphBind’s  better  performance  has  to  do  with  their

incorporation of evolutionary data.  ~80% of its MCC contribution of GraphBind is
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from  evolutionary  information  alone.  As  discussed  before,  the  27  electron

microscopy  structures  also  contribute  to  JEDII  lagging  behind  GraphBind  and

incorporating evolutionary information is likely to improve our efficacy. 

Apart from using benchmark datasets, we compared the performance of JEDII

with GraphBind and HDock on the PDNA-285 dataset. GraphBind is currently the

best method for predicting DNA-binding residues and incorporates both structural

and sequential features for making predictions. While HDock is a protein-nucleic acid

docking program that predicts the binding pose of the DNA. We perform better than

GraphBind and HDock in all measures except the sensitivity. 

To  validate  the  DNA  sequence  prediction,  we  used  data  from  ChIP-seq

experiments,  since  it  is  one  of  the  most  common  methods  to  identify  the  DNA

sequence binding a protein. We used data from the PWMs generated by ChIP-seq

experiments  and  compared  the  DNA  sequence  predicted  by  JEDII  with  all  the

sequences that would satisfy a given PWM. In this case, we have a motif similarity of

0.81.

One  of  the  reasons  for  the  high  similarity  score  values  in  ChIP  seq

experiments  could  be  the  presence  of  ambiguous  positions  in  the  PWM.  By

ambiguous positions, we mean that all four nucleotide occur at that position (Ns) in

the consensus sequence. While it is possible that at a particular position no single

nucleotide  is  favored,  the  experimental  conditions  also  influence  the  binding  of

proteins to  DNA.  Therefore,  less  stringent  conditions  could enhance non-specific

binding resulting in a PWM with more Ns. Thus, it is crucial to rationalize the data

obtained from ChIP-Seq experiments with known DNA-protein specificity patterns.

Considering the time and resources involved in performing ChIP experiments, JEDII

can be used to obtain a preliminary hypothesis of the putative binding site.

For  comparing  the  DNA  sequence  prediction  by  JEDII  with  other

computational methods, there were only two candidates- DBD2BS and a study by

Farrel and Guo. While DBD2BS is a method that can be used for any DNA-binding

protein, the method by Farrel and Guo is specific for transcription factors. DBD2BS

aligns the query protein to templates and uses knowledge-based potentials to predict

a PWM. Since JEDII can predict a single DNA sequence, thus for comparison, we

used their measure of a correct prediction. They consider a prediction as correct if
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the predicted nucleotide is also the nucleotide with the highest  frequency at that

position. JEDII performs better than DBD2BS in 4 out of 7 test cases and equivalent

in 1. 

The Farrel and Guo method is a fragment-based method for predicting the

PWM bound by transcription factors. Since a direct comparison was not possible, we

compared JEDII with their method using similarity scores. For each position in the

PWM,  we  consider  it  as  a  correct  prediction  if  that  nucleotide  has  the  highest

frequency for that position. The Farrel and Guo method also attempted to correctly

identify a position in the PWM, but with the PCC method  (119). We compared the

similarity scores for both methods and performed better than the Farrel  and Guo

method in 18 out of 27 proteins. Both methods have the same similarity score in two

cases,  and JEDII  has worse performance than the Farrel  and Guo method in 7

cases.  As  mentioned  previously,  incorporating  nucleotide-amino  acid  interaction

probabilities could improve the performance of JEDII for DNA sequence prediction.

In the different datasets,  a common limitation of JEDII  is its comparatively

lower sensitivity. The lower value of sensitivity is due to its inability to make a correct

prediction  without  an  appropriate  template.  With  the  increasing  structural  data,

incorporation  of  evolutionary  information  and  protein-nucleotide  specificity

information, JEDII  can be improved in the future.  Overall,  despite being a solely

structure-based method, JEDII outperforms not only other structure and sequence-

based  methods,  but  most  methods  that  employ  a  combination  of  structure  and

sequence.

Conclusion

We have developed an algorithm that can predict  the DNA-binding residues,  the

binding pose and the DNA sequence that would bind a given protein structure. It is

robust and can make predictions on the unbound conformation of proteins, in the

absence  of  close  homologs  and  on  protein  models.  The  unique  feature  of  this

method is that it can predict the DNA sequence for a given protein regardless of its

structural  or  functional  class.  Thus,  if  sufficient  structural  data  is  available,  this

method  could  be  extended  to  RNA-protein  complexes  as  well.  It  integrates  the
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problems  of  prediction  of  DNA-binding  residues  and  the  prediction  of  DNA

sequences into the common umbrella of DNA-protein interface prediction. 
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