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High-affinity biomolecular interactions
are modulated by low-affinity binders
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The strength of molecular interactions is characterized by their dissociation constants (KD). Only high-
affinity interactions (KD ≤ 10−8 M) are extensively investigated and support binary on/off switches.
However, such analyses have discounted the presence of low-affinity binders (KD > 10−5 M) in the
cellular environment. We assess the potential influence of low-affinity binders on high-affinity
interactions. By employingGillespie stochastic simulations andcontinuousmethods,wedemonstrate
that the presence of low-affinity binders can alter the kinetics and the steady state of high-affinity
interactions. We refer to this effect as ‘herd regulation’ and have evaluated its possible impact in two
different contexts including sex determination in Drosophila melanogaster and in signalling systems
that employ molecular thresholds. We have also suggested experiments to validate herd regulation in
vitro. We speculate that low-affinity binders are prevalent in biological contexts where the outcomes
depend on molecular thresholds impacting homoeostatic regulation.

Key to all biological processes are biomolecular interactions. Networks of
these interactions are organized into pathways that, in many instances,
intersect1,2. Thesepathwaysusually consist of tight-binding interactions. In a
cellular context, these interactions do not occur in isolation but in the
presence of a plethora of other molecules and pathways. This, in turn,
ensures that biomolecules can promiscuously interact with multiple part-
ners with varying degrees of affinity. It stands to reason that some of these
interactions and their interaction strengths have evolved to be integral parts
of signalling pathways.

In this study, we have analysed the influence of specific but low-affinity
binders on tight-binding high-affinity interactions. The strengths of these
interactions are reported in terms of their dissociation constants, KD. KD is
the equilibrium constant of the reverse reaction given by the ratio of the
reverse and forward rate constants. Typically, members of a pathway would
interact with their partners, with KD values in the range of 10−6–10−14 M3,4,
with lower values corresponding to stronger binding. However, the cellular
environment consists of a variety of interactors with variable affinities. In
addition to its specific high-affinity binding partner(s), a biomolecule could
encounter a cohort of other binders with KD values > 10−6 M present in the
vicinity. Many of these lower affinity interactions could be energetically
favourable (negative ΔG) and thus are competent to sequester the reactants
from the high-affinity reaction.

Studies of biological processes usually focus almost exclusively on the
important tight-binding interactions. This is in part because these canonical
interactions are considered to be central to cellular processes. Moreover,
experimental techniques mostly detect strong interactors5–7. Here, we have

examined how these high-affinity (tight binding) interactions could be
altered and/or modulated in the presence of several specific low-affinity
binders. For this study, low-affinity interactors were conservatively con-
sidered to have KD values of 2–5 orders of magnitude less favourable than
their stronger counterparts. We also vary the concentration of the low-
affinity binders to be in the range of 1X–10X to that of the tight-binding
partners. This is a conservative estimate as the cellular milieumay contain a
higher concentration of the low-affinity binding partners, mechanisms for
local enrichment of binding partners notwithstanding.

Using these values of binding strengths and relative concentrations, we
investigated the combined effect of such weak binding partners on the
kinetics and equilibrium of a tight-binding interaction.We computed these
effects using Gillespie stochastic simulations 8,9 and also replicated them
with a system of differential equations. For instance, consider the following
interaction:

Aþ B"AB

Here, the reactantsA andB interact tightly to form the productAB. Let
Ai and Bi represent the cohort of specific low-affinity binders of B and A,
respectively. We have studied how the kinetics and steady-state changes
with varying levels and binding affinities ofAi andBi in the cases where—(i)
there are low-affinity binders for eitherA or B, (ii) both reactants have low-
affinity binders, and (iii) there are low-affinity binders to A and B and the
Ai’s and Bi’s can interact with each other. We have coined the term herd
regulation to represent the model of low-affinity binders interfering with
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high-affinity interactions. Intuitively, this would be possible when the low-
affinity interactions are in sizeable quantities (herds).

In a cellular context, such interactions should be prevalent as the low-
affinity binders are likely widespread. Their presence could modulate
molecular interactions and hence biological activities. Here, we have
modelled the process of sex determination in Drosophila melanogaster and
signalling thresholds of biomolecular processes, two processes whose out-
comes are dependent on thresholds.

Sex-lethal (Sxl), a master-switch gene, which determines the female
identity, is turned on by the doubling of the X chromosome signal in
females10. Analysis of mutations in X-chromosome-linked activators has
confirmed that activation of early embryonic promoter of Sxl (Sxl-Pe) is
critical in females and, thus, underlies the binary fate choice. By contrast,
strong repressors capable of affecting sex determination i.e. sex-specific
identity and/or viability, have not been identified11,12. Loss of function
mutations in such repressors would result in anomalous activation of Sxl-Pe
in males, which in turn, can induce male-to-female transformation or
lethality. Here, we hypothesize that such repressors are a set of low-affinity
binders. A single mutation, typically isolated during genetic screens, how-
ever, would not elicit strong phenotypic consequences (e.g. sex-specific
lethality) used as conventional and stringent criteria for selection. To
examine the possible impact of such repressors, we have modelled this
system consideringA as the switch gene,B as the X chromosome signal and
Ai and Bi as repressors. We demonstrate that our simulation strategy yields
outputs that are consistent with previously reported experimental findings.

Successful activation of biological signalling pathways often requires
signal strength to attain or surpass a defined threshold value. Such systems
involve the conversion of a linear change in the signal, to a binary on/off
state. Morphogen gradients leading to cellular patterning in a variety of
developmental contexts constitute one such example13. Although such cases
are prevalent in biological systems, precise molecular mechanisms under-
lying these decisions are not always fully understood. Previous modelling
attempts at elucidating themechanisms have employedmodels that depend
on cellular compartments and/or promiscuous binders14. In this study, we
provide a simple yet broadly applicable mechanism that explains such
thresholds using low-affinity binders.

Methods
Reactions
Consider the following reaction:

Aþ B"AB ð1Þ

Consider the following reactions happening in proximity to the reac-
tion in Eq. (1):

Aþ Bi "ABi ð2Þ

Ai þ B"AiB ð3Þ

Ai þ Bi "AiBi ð4Þ
Here A, B, Ai and Bi, each represent ensembles of biomolecules. The

Interactions between any pair of A and B have high affinity, whereas the
interaction between Ai and Bi, have low affinity. Note that although these
interactions are low affinity, they are specific.

Gillespie stochastic simulations
Differential equations can describe the progression of reactions determi-
nistically. But they assume that the reaction volume is infinitely large, and
the stochastic behaviour of molecules is cancelled out. This also means that
the concentration terms are continuous. But a cell is a small system with
relatively few molecules. In such a system, the concentration is no longer
continuous, and randomness could often play an important role.Weuse the
direct method of the Gillespie stochastic simulation algorithm8,9 to simulate

such a system. This is a numerical method for simulating the temporal
evolution of systems of chemical reactions with randomness. It involves
iteratively sampling reaction events and updating the state of the system
basedon the chosen reaction and the current state of the system.And thus, it
can be used to study the behaviour of complex chemical systems over time,
including the effects of noise and uncertainty on the system’s dynamics.

We implemented the Gillespie algorithm, in python3. First, the initial
state of the system is set, including the number and types of reactants and the
reaction rates for each chemical reaction. Then, for eachpossible reaction, the
propensity, ameasure of the likelihood that the reactionwill occur in the next
time step, is calculated based on the reaction rate and the current state of the
system. A random number generator is used to choose one of the possible
reaction events basedon the propensities calculated. The state of the system is
then updated by adding or subtracting reactants as appropriate. The simu-
lation time is advanced by a time step calculated based on the inverse of the
sum of propensity and a random number. The process is repeated until the
system reaches (a) a pre-specified time, (b) a specified number of iterations,
(c) when a product crosses a pre-specified level or (d) steady state.

Parameters used to generate the results for stochastic
simulations
Only one of the strong interactors has competition: A0 = 500, B0 = 500,
KD = 10−8 M, and C0 = 10−5 M and N0 = 1000. Bi0 and KD_i were varied in
the section.

Both strong interactors face competition: A0 = 500, B0 = 500,
KD = 10−8 M and C0 = 10−5 M and N0 = 1000. Ai0, Bi0 and KD_i were varied
in the section.Note that in all the cases,Ai0 = Bi0, and their binding affinities
were also kept the same and represented by the common term KD_i.

Interaction amongst the low-affinity competitors decreases herd reg-
ulation: A0 = 500, B0 = 500, Ai0 = 5000, Bi0 = 5000, KD = 10−8 M,
KD_i = 10−6 M and C0 = 10−5 M and N0 = 1000. KD_cross was varied in the
analysis.

Sxl activation inDrosophilamelanogaster:A0 = 50,B0 = 200,Bi0 = 2000
andKD = 10−8 M,KD_i = 10−6 MandC0 = 10−5 MandN0 = 1000.Bi0 andBi0
were varied in the section.

Signalling thresholds in biological systems: A0 = 50 and KD = 10−8 M,
KD_i = 10−5 M and C0 = 10−3 M andN0 = 100. A0, B0 and Bi0 were varied in
the section. The simulations were carried for 10,000 seconds.

Local concentrations of reactants
Here we are addressing the physiological relevance of the concentrations of
interactors used in the study. To do this, we estimate the volume that
contains a single interactor. This in turn gives us the distance that separates
two interactors.

The average volume (m3) occupied by one interactor is calculated from
the concentration as

Volume ¼ N0

C0 × 6:022e23
× 10�3

whereN0 is the number of interactors andC0 is the concentration. 6.022e23
is Avogadro’s number and 10−3 is the conversion factor from dm3 to m3.

Assuming that the volume containing the interactor is spherical,

Volume ¼ 4
3
πr3

where r is the radius of the sphere. The average distance (d) that separates
two interactors is 2r

d ¼ 2×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
4π

×Volume
3

r

In this study,wehave considered reactant concentrations ranging from
10−5 to 10−3 M. We have also worked with the number of interactors in the
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range from (of the order of) 100–1000. Substituting these values in the
equation above gives us interactor distance ranging from 68.2 to 682 nm.
Considering that the sizes of these interactors are of the order of a few nm
and also that cellular and sub-cellular compartments are micrometre scale
objects15, the concentrations do not represent overly crowded or unphysical
scenarios. In fact, in several instances, the concentrations of cellular inter-
actors are shown to be much higher than our somewhat conservative
estimates.

Regulatory processes in biological systems usually occur under con-
ditions of local enrichment, e.g. localization in sub-cellular compartments16,
nuclear speckles17 and lipid rafts in the cell membrane18. Such local
enrichments have been shown to increase effective concentrations by as
much as five orders of magnitude19. In comparison, the values of con-
centrations used in this study are conservative.

Steady-state calculations
For reactions with only Bi present, a steady state was assumed to have been
reachedwhen the average fluctuation over 1000 steps for every reactant and
product is less than 1 (molecule or molecular complex). This was evaluated
in intervals of 100 steps.

For reactions with both Bi and Ai, steady-state was assumed to have
been reached when the average fluctuation of over 1,000,000 steps for every
reactant and product is less than 1 (molecule or molecular complex). This
was evaluated in intervals of 100,000 steps.

Calculation of propensities
The propensities were calculated using the following equations:

kf ¼ 105M�1s�1

kr ¼ kf ×KD

pf ¼
C0

N0
× kf

pr ¼ kr

where kf and kr are the forward and reverse rate constant, respectively. kf is
diffusion controlled and set at 105M−1 s−1 20. pf and pr are the forward and
reverse propensities used in the Gillespie stochastic simulations. C0 and N0

are used to scale the second-order forward rate constant (kf) based on
concentration.

Parameters for generating results from differential equations
The parameters used are the same as those described for stochastic simu-
lations above, except that the number of molecules was converted into
concertation using the following formula based on effective concentrations
of the number of particles in the Gillespie simulations, calculated as follows:

effective concentration ¼ C0

N0
× number of particles

Initial concentration of Ai is set to 0 for if Eq. (3) is not relevant and
KDcross for the dissociation of AiBi is set to infinity in all sections except the
cases where Eq. (4) is relevant.

Trajectories were calculated by Runge–Kutta 4th-order numerical
integration. The equilibriumstateswere calculatedby solvingEqs. (10)–(12)
forAB,ABi andAiB. The system of equations was solved by sympymodule
in python3. Real solutions that satisfy stoichiometry are selected.

Results
The effect of low-affinity competitors on strong interactions
Case 1: Only one of the strong interactors has competition. To start
with, we examined the effect of low-affinity interactors on one of the
components of a tight-binding complex, i.e., the effect of Bi on the for-
mation of the complex AB (see Eqs. (1) and (2)). The outcome of these
reactions is intuitive but serves the crucial purpose of creating a control
case for subsequent sections.AB (dissociation constant KD = 10−8 M) is 3
orders of magnitude stronger than ABi (dissociation constant
KD_i = 10−5 M). We have monitored the effect of two parameters, initial
levels of the low-affinity interactors, Bi0, and their binding affinities,KD_i.
We analysed the kinetics and steady states of these reactions using the
Gillespie stochastic simulation algorithm9.

First, we studied the effect of Bi0 levels. The simulation was set up with
500 copies of A and B and with KD = 10−8 M. Kinetics of reactions with
different levels of Bi0, ranging from 0 to 10,000 were analysed at
KD_i = 10−5 M. At the beginning of the reaction, the entitiesA, B and Bi are
present as free monomers. Almost instantaneously, all the monomers of A
are bound to either B or Bi, proportional to their relative abundance. As
expected, the larger the value ofBi0, the longer the system takes to equilibrate
(Fig. 1A). This is because the forward rate constants of the formation ofAB
and ABi are assumed to be equivalent. Consequently, the levels of ABimay
be transiently higher than that ofAB (see Supplementary Fig. 6A for the case
where the reverse rate constant is equal).ABi levels decrease whileAB levels
increase sinceABi aremore likely todissociate thanAB. (Fig. 1A).As a result,
the average time taken (from 50 replicates) for the formation of AB (90% of
the maximum possible level, rise time) increases with rising levels of Bi0
(Fig. 1B).

Wealso examined the effect of variation in thedissociation constants of
low-affinity interactors, on the formation of AB. This was done by varying
KD_i from 10−4 to 10−6 M while maintaining a Bi0 level of 5000. Again, as
expected, decreasing KD_i (increasing the binding strength of the low-
affinity binder) decreases the rise time of AB (Fig. 1C). When KD_i is
>10−4 M, the formation of AB complex breaches the 90% level almost
instantaneously. At the other extreme, when KD_i is smaller than 10−6 M
(getting closer to KD), intuitively, the rise time of the AB complex tends to
infinity (Fig. 1D).

To calculate the amount ofAB found at equilibrium, we have analysed
the steady-state levels of the AB complex at 625 individual combinations of
25Bi0 levels ranging from 0 to 9600 and 25KD_i values ranging from10−3 to
10−8 M, each replicated 25 times.We observed that AB is themajor product
as long as KD_i is >10

−7 (Fig. 1E). However, Bi0 levels start to affect the
amount ofAB formed beyond 5000molecules. Interestingly, variance in the
outcome of the reaction also increases with increasing Bi0 and increasing
KD_i (Fig. 1F). This is quite counterintuitive as one would expect the var-
iance from Gillespie stochastic simulations to decrease with an increase in
the size of the system. The two regions in Fig. 1Fwith low variance are either
dominated by AB or ABi, and the ‘twilight zone’ where both complexes are
found in comparable amounts, has high variations.

Since low-affinity interactors acting on one component of the high-
affinity interaction can significantly impact the rate of high-affinity inter-
action, we sought to assess the effect of low-affinity interactors on both the
high-affinity binders.

Case 2: Both strong interactors face competition. In addition to low-
affinity interactors of A (Bi), we now also consider the presence of
interactors of B (Ai) in the reaction. Ai interacts with B and forms the
complexAiB (see Eqs. (1)–(3). The dissociation constants of ABi andAiB
are both described by a single term, KD_i, as we consider them to be
equivalent. For this reason, all the results only describe/show ABi, while
the equivalent AiB is not shown. As in the previous section, the binding
affinity of the tight binder (KD) is 3 orders of magnitude stronger than
KD_i. We analysed the effect of varying the starting levels of Bi and Ai, as
well as their binding affinities KD_i on AB formation using Gillespie
stochastic simulations.
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We first examined the effect of starting levels of Bi and Ai on AB
formation. Simulations were set up with 500 copies ofA and B and with
KD = 10−8M. The kinetics of reactions with different levels of Ai0 and
Bi0, ranging from 0 to 10,000 were analysed at KD_i = 10−5 M. We
observed that the presence of low-affinity binders increases the rise
time of AB (Fig. 2A). The time taken for AB to equilibrate is an order of
magnitude higher thanwhat we noticedwhen onlyBiwas present in the
system (Figs. 1A and 2A). Also, the rise time increases exponentially
with increasing values of Ai0 and Bi0 (Fig. 2B). These results suggest a
non-linear effect arising from the addition of one more low-affinity
binder.

We then investigated the effect of KD_i on AB formation at values
ranging from 10−4 to 10−6 M. Decreasing KD_i increases the time taken for
AB to equilibrate (Fig. 2C). Surprisingly, at KD_i = 10−6 M (two orders of
magnitude weaker than AB), the reaction seems to prefer the formation of
the low-affinity complex (Fig. 2C). We also found that the rise time expo-
nentially increases with decreasing dissociation constant (Fig. 2D).

To investigate this further, we analysed the steady state of these reac-
tions using 625 different combinations of 25Ai0 and Bi0 levels ranging from
0 to 9600 and 25 KD_i values ranging from 10−3 to 10−8 M. AB is not the
major product if the number of Ai0 and Bi0 are both above 3000 and KD_i is
below10−6 M (Fig. 2E). This is despite aKDof 10

−8 Mandwith 500 copies of
both A and B. The variability in outcome for reactions within this range is
also low. Remarkably, the variability in AB levels at steady state is com-
paratively higher betwixt the areas that completely prefer AB or ABi (Fig.
2F). Thus, the simultaneous presence of the weak binders,Ai0 andBi0, in the
system, has a greater impact on the formation of AB, than when only one
weak binder is present. This enhancement is sufficient to allow the weaker
complex to become the major product. Note that adding Ai to the system
does not increase the concentration of one binder as Bi and Ai bind

specifically to A and B, albeit with low affinity. Henceforth, we refer to this
effect of weak binders as herd regulation.

The presence ofmonomericAi andBi in the system is likely responsible
for the sharp decline in AB formation. This is because monomeric A and B
formed by the dissociation ofABi orAiB have a higher chance of interacting
with Bi and Ai, respectively, than with another tight-binding monomer. To
assess if this is true, we have analysed the outcome when free Ai and Bi can
interact with one another to produceAiBi, a systemwith aminimal amount
of monomeric Ai and Bi.

Interactionamongst the low-affinity competitorsdecreasesherd
regulation
We investigated the effect of low-affinity interactorsAi andBiwhen they can
bind to each other to give rise to the reaction product AiBi (Eq. (4)). The
dissociation constant of AiBi is denoted by KD_cross. We set the dissociation
constant forABi andAiB as 10

−6 M, a value atwhich herd regulation favours
the low-affinityproducts (Fig. 2C).We simulated the effect of cross-reaction
between Ai and Bi on the kinetics of this system using Gillespie stochastic
simulations.

We found that decreasing KD_cross (increasing cross-reaction
strength) increases the rate ofAB formation (Fig. 3A). This is intuitive
as it decreases the net concentration of low-affinity monomers pre-
sent. But it is noteworthy that in this section, we are expanding on a
particular case from the previous section where the low-affinity
binders were dominant even with 2 orders of magnitude weaker
binding affinity. Also, note that even with a strong cross-reaction
(compared to KD_i) the system prefers weak binding complexes. Also,
the time taken for AB to reach 90% saturation decreases with
decreasing KD_cross (Fig. 3B). Thus, stronger AiBi interactions favour
more active product formation by sequestering themonomericAi and

Fig. 1 | The dependence of complex formation on the starting levels and dis-
sociation constants of the low-affinity binder Bi. The kinetics of AB (blue lines)
and ABi (red lines) formation at different Bi0 and KD_i (panels A and
C, respectively). The effect of Bi0 and KD_i on the number of AB at steady state
(average of 25 replicates per box in panel E) with the standard deviations in
panel C. The time taken for AB to reach 450 molecules (90% of the maximum

possible value of 500) at different Bi0 and KD_i levels (panels B and
D, respectively). Panels A and C show single trajectories taken from triplicate
simulations. The lines in panels B and D are averages over 50 replicates with
individual data points shown as scatter plots. The parameters used are shown in
the figures.
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Bi as AiBi, allowing the lower probability dissociation reactions to
occur and leading to the formation of the tight-binding complex.

Sincewe established that low-affinity binders can affect thekinetics and
equilibriumof tight-binding interactionswenow aim to formulate a general
model that describes this effect (herd regulation).

General model for describing herd regulation with multiple
interactors
In this section, we have formulated a general model that describes the
kinetics and equilibrium of a herd-regulated system based on sets of
ordinary differential equations.

Fig. 3 | The effect of cross-reaction between low-affinity inhibitors on herd
regulation using Gillespie stochastic simulations. The kinetics of AB (blue) and
ABi (Red) complexes at cross-reaction dissociation constants (KD_cross) 10

−4 and
10−5 M (panel A). Panel B shows the effect of KD_cross on the time taken for AB to

reach 450 (90% of the maximum possible value of 500, black dotted line in panel A.
One of 3 replicates is plotted in panel A. The plot in Panel B shows averages of 50
replicates (shown as a scatter). Starting values of A, B = 500, KD = 10−8 M and
KD_i = 10−6 M. Parameters are shown above the figures.

Fig. 2 | The dependence of complex formation on the starting number and
dissociation constant of low-affinity binders Bi and Ai. The kinetics of AB (blue
lines) and ABi (red lines) formation at different starting levels and dissociation
constants of Bi and Ai (panels A and C, respectively). The effect of different starting
levels and dissociation constants of Bi andAi on theAB levels at steady state (average
of 25 replicates per box in panel E and the standard deviations in panel F). The time

taken for AB to reach 450 (90% of the maximum possible value of 500, black dotted
line in panelsA andC) at different starting levels and dissociation constants ofBi and
Ai (panels B and D respectively). Panels A and C represent single trajectories taken
from triplicate simulations. The lines in panels B and D are averages over 50
replicates. The parameters used are shown in the figures.
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Consider the N bimolecular association reactions simultaneously
happening in the same reaction volume.

anAn þ bnBn " cnCn

Here a, b and c are the stoichiometric coefficients of A, B and C,
respectively. And n denotes the individual reaction involved in the process.
For every n 2 1; 2 . . .N

The net rate of formation of complexes for these reactions is defined
as the sum of forward and reverse rates at any given time point. The
following set of equations defined the rates of formation of each com-
plex.

d Cn

� �
dt

¼ kforwardn An

� �an Bn

� �bn � kreversen Cn

� �cn

Here ½An], ½Bn� and ½Cn� represent the concentration of the respective
entities at a given point in time and, kforwardn and kreversen represent the
forward and reverse (on and off) rate constants for a reaction.

The rate of changeof the complex is 0 at equilibriumandKD is the ratio
of the reverse and forward rate constants. Thus, the above equation sim-
plifies to the following set of equations that describe the system at equili-
brium.

Cn

� �cn ¼ An

� �an Bn

� �bn
KDCn

ð5Þ

The equilibrium states can be determined by solving the above set of
equations.

The states of An and Bn at any given time can be defined in terms of
their initial concentrations, the concentration of complexes that they are
part of at a given time and their stoichiometry.

An

� � ¼ An0

h i
�

X
i2SA

an
ci
ðCi0

� CiÞ

Bn

� � ¼ Bn0

h i
�

X
i2SB

bn
ci
ðCi0

� CiÞ

Here SA is the set of complexes that consume An and SB is the set of
complexes that consume Bn. The concentration terms with subscript 0 are
the initial concentrations of the respective entities.

This model can be used to generate equations that describe specific
cases of herd regulation. For example, the following set of equations
describes the system of reactions used in the study i.e. 1–4.

d AB½ �
dt

¼ k1 A½ �ð Þ B½ �ð Þ � k�1 AB½ � ð6Þ

d ABi

� �
dt

¼ k2 A½ �ð Þ Bi

� �� �� k�2 ABi

� � ð7Þ

d AiB
� �
dt

¼ k3 Ai

� �� �
B½ �ð Þ � k�3 AiB

� � ð8Þ

d AiBi

� �
dt

¼ k4 Ai

� �� �
Bi

� �� �� k�4 AiBi

� � ð9Þ

The equilibrium states can be deduced by solving,

AB½ � ¼ A½ � B½ �
KDAB

ð10Þ

ABi

� � ¼ A½ � Bi

� �
KDABi

ð11Þ

AiB
� � ¼ Ai

� �
B½ �

KDAiB

ð12Þ

AiBi

� � ¼ Ai

� �
Bi

� �
KDAiBi

ð13Þ

Since the reactants are shared by the reactions A, B, Ai and Bi are
affected by multiple reactions and can be expressed as shown below.

A½ � ¼ A0

� �� AB½ � � AB0

� �þ ABi

� �� ABi0

� �� �

B½ � ¼ B0

� �� AiB
� �� AiB0

� �þ AB½ � � AB0

� �� �

Ai

� � ¼ Ai0

� �� AiB
� �� AiB0

� �þ AiBi

� �� AiBi0

� �� �

Bi

� � ¼ Bi0

� �� ABi

� �� ABi0

� �þ AiBi

� �� AiBi0

� �� �

Here the concentrations with a subscript of 0 imply the initial
concentration

Using Eqs. (6)–(13) we computed the trajectories and equilibrium
states for herd regulation with (i) only Bi as shown in Supplementary Fig. 3,
(ii) with Bi and Ai in Supplementary Fig. 4 and (iii) where Bi and Ai cross-
react in Supplementary Fig. 5. The results from this continuous model
closely match the results obtained from Gillespie stochastic simulations.

Note that the equilibrium state only depends on the dissociation
constant and is completely independent of the forward and reverse rate
constants. Thus, our assumption of diffusion-limited forward rate constant
being equal for all reactions only affects the results describing the kinetics of
herd regulation. The concentrations of the complexes approach that of the
equilibrium values regardless of the combinations of rate constants used.
This is demonstrated in Supplementary Fig. 7 where we have studied the
trajectories for the formation of AB and ABi when we fix the reverse rate
constant to 10−3 s−1. These trajectories lack the initial transient peak forABi
but still converge to the same values as corresponding trajectories with a
fixed forward rate constant.

In the last four sections, we have explored the effect of low-affinity
interactors on tight binders and formulated a general model that describes
herd regulation. In the next two sections, we have examined the effect of
herd regulation in deterministic biological contexts and have explored its
potential impact on binary outcomes.

Herd regulation in biological processes
Here wewill illustrate how herd regulation could affect biological processes.
In the first case, we will look at sex determination in Drosophila melano-
gasterwhere a two-fold increase in X chromosome-linked signal generates a
binary response during the activation of the Sxl gene, which determines the
female identity. The second example is an illustration of a biological system
of receptors and ligands that depends on threshold value determinants.

Example 1: Low-affinity binders are responsible for the absence of
Sxl activation in Drosophila melanogaster males. Sexual identity in
Drosophila melanogaster depends on the female-specific activation of the
binary switch gene Sex-lethal (Sxl) before cellularization at cycle 14. Sxl
activation, in turn, is regulated by the Sxl establishment promoter Sxl-Pe.
This process is dependent on X-linked signal elements (XSEs) and
autosomal repressors. As females have twoX chromosomes, they are able
to produce twice the amount of XSEs as compared to males and can
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specifically activate Sxl-Pe. By contrast, Sxl-Pe remains off in males who
only have one X chromosome. (In insects, the Y chromosome does not
contribute to male determination, unlike in mammals.). The molecular
identities of XSEs are well known10,12,21–25. However, the precise
mechanismunderlying how the doubling ofXSE induces the activation of
Sxl-Pe remains unknown26. Of note, no direct repressor that binds to Sxl-
Pe during early nuclear cycles has been identified, thus far. Moreover,
mutations in deadpan (dpn) and groucho (gro), two known negative
regulators of Sxl-Pe, display relatively modest phenotypes11,27–30.

Here we test the model that multiple low-affinity binders, capable of
interfering with the interaction between activators and Sxl-Pe, function as
regulators of Sxl. As the repression depends on several low-affinity binders,
it is relatively straightforward to explain why the forward genetic screens
were unable to identify corresponding mutants. Single mutations typically
isolated in the genetic screens will not display the requisite phenotype.

Our model posits that sex determination involves one tight-binding
complex, AB, regulated by weaker complexes ABi (Eqs. (1) and (2), and
Fig. 4). Here, the DNA binding sites in Sxl-Pe and XSEs constitute tight
binders (A and B) and form the activating complex (AB). We assume that
binding of the low-affinity repressors inhibits the promoter from binding to
the activator, directly or indirectly. Low-affinity interactors (Bi) are
repressors of Sxl-Pe that form the repression complex (ABi). We assumed
that there are 50 binding sites in Sxl-Pe31, 200 XSE activators and 1000 low-
affinity repressors. The dissociation constant (KD) of the active complex is
10−8 M. The repression complex has a 100-fold lower dissociation constant
(KD_i) of 10

−6 M.Here again,we considered identical forward reaction rates,
whereas the reverse reaction rates are determined by the dissociation con-
stant. Both XSEs and repressors compete for DNA binding sites in Sxl-Pe.
We consider Sxl-Pe to be engaged in active transcription when 90% (45) of
the binding sites are occupied by XSEs. Note that the values that we have
used are estimations due to the unavailability of biochemical characteriza-
tion to obtain such values.

We used Gillespie stochastic simulations to study the kinetics of this
system.We calculated the amount of XSEs and repressors bound to Sxl-Pe-
binding sites after 100 units of simulation time at different starting levels of
XSEs and repressors. The simulation time scales are relative to the rate
constants and may not correspond numerically to biological times.

We first assessed the activity of Sxl-Pe at different starting values of
XSEs and repressors. As expected, the promoter is predominantly occupied
by the repressors when activator levels are low. IncreasingXSE levels elevate
the number of activating complexes (Fig. 5A). Subsequently, we examined
the effect of changing repressor levels on Sxl-Pe activity. Increasing the
starting levels of repressors decreases the number of activator-bound Sxl-Pe
sites. The binding sites are occupied by an equal number of activators and
repressors when the starting levels of repressors are 13 times that of the
starting levels of XSEs. This is despite a 100-fold difference in binding
affinities (Fig. 5B).

Next, we focused on the time taken for the activation of Sxl-Pe, both in
males and females. Inwild-typeDrosophilamelanogaster embryos, activation
of Sxl-Pe results in female fate, whereas it remains off inmales. Furthermore,
this is a time-sensitive process as Sxl-Pe is active only between nuclear cycles

11–14, and the sex of the embryo is determined by early cellularization. (This
is a narrow time window spanning just three nuclear cycles and takes about
30min or ~2000 s.). For this, we analysed the ratio of time taken for Sxl-Pe
activation inmale nuclei and female nuclei inDrosophila embryos where sex
determination occurs autonomously. The calculations accounted for the fact
that theXSE levels in females are twice that inmales.We found that this ratio
is in a narrow range between 2 and 3 even when activator levels are varied
between 200 and 1000 (Fig. 5C). Thus, activation of Sxl-Pe in males takes
approximately twice as long as compared to females.We arbitrarily selected a
test case where the starting level of XSEwas 200 (formales) to study the time
dependence of sex determination. We analysed this over a population of
10,000 male and female simulations, each corresponding to a single nucleus.
The time distributions in males and females for Sxl-Pe activation show two
distinct peaks corresponding to the two sexes, withmales (on average) taking
appreciably more time for activation than females (Fig. 5D). Note that Sxl
activationoccursover a rangeof time. Importantly, thispatternofnearlynon-
overlapping distributions indicates that within a given time interval, Sxl-Pe is
activated only in females. There is, however, a small overlap between themale
and female distributions (purple region in Fig. 5D). This indicates that in a
small subset ofmalenuclei,Sxl-Pe is turnedonandvice versa in females. If the
cellularization event occurs between the two peaks (green dotted line in Fig.
5D), ourmodel can temporally distinguishmale and female Sxl-Pe activation.
Thus, our simulations suggest that the time constraint imposed upon the
activation of Sxl-Pe is significantly responsible for its female-specific activa-
tion. Furthermore, in the absence of such constraints, Sxl-Pe can be active
even in male embryos, which has been demonstrated to lead to detrimental
consequences10. Altogether, our analysis recapitulates both the sex-specificity
and the temporal dynamics of Sxl-Pe activation. Increasing amounts of low-
affinity repressors increase the time taken for activation for both males and
females. The effect of 1000 (half), 4000 (double) and zero low-affinity
repressors on sex determination is shown in Supplementary Fig. 2.

Example 2: Signalling thresholds in biological systems can be
explained by herd regulation. In general, molecular thresholds are
crucial in several biological signalling events ranging from cell fate
determination in early development to neuronal action potentials.
Without such thresholds, signals resulting from stochastic noise
(inherent to crowded cellular environments) would be able to aberrantly
activate (or repress) biological processes. In this section, we describe a
general molecular mechanism of how herd regulation can be instru-
mental in establishing such thresholds in biological systems.

Consider the example where receptor A is activated by binding a sig-
nallingmoleculeB to form the receptor-signal complexAB. The systemalso
contains low-affinity binders for the receptor and signalling molecule (Bi
and Ai, respectively), as we have explored in the previous sections. The
receptor-signal complex is assumed to have a dissociation constant of
10−8 M, whereas both the low-affinity complexes have a dissociation con-
stant of 10−6 M.Wemodelled the kinetics of this system using the Gillespie
stochastic simulationwith 50 receptors and 500 signallingmolecules. This is
in keeping with the observation that signalling molecules are usually in
excess compared to the number of receptors32. The system also contained

Fig. 4 | Components of our model of Sxl-Pe reg-
ulation. The blue objects represent XSEs, while the
red objects represent the low-affinity repressors. The
brown boxes represent protein binding sites on Sxl-
Pe. The arrow depicts the transcription start site.

https://doi.org/10.1038/s41540-024-00410-z Article

npj Systems Biology and Applications |           (2024) 10:85 7



500 copies of each of the two low-affinity binders. We monitored the levels
of the receptor-signal complex (amount ofAB formed) after 10,000 units of
simulation time, starting with different levels of the signal (B). The time of
10,000 units was chosen to represent a phase of the reaction that is sig-
nificantly distant from the fast-starting kinetics (see Supplementary Fig. 1A
for a comparison of different time cutoffs). We simulated this system at
different starting receptor levels and at levels of the low-affinity receptors.

We observed a sigmoidal-like relationship between the number of
receptor-signal complexes and the starting levels of the signal. When the
numberof signallingmolecules in the system is below a threshold the rate of
increase of the number of receptor-signal complexes is gradual. As soon as
the number of signalling molecules exceeds the threshold, the number of
receptor-signal complexes increases sharply (sigmoid-like). Increasing the
levels of the receptor molecule does not alter the threshold but only
increases thefinal levels of the active receptor (Fig. 6A). Interestingly, we see
that the threshold value is regulated by the number of low-affinity receptors
in the system (Fig. 6B).Whereas, varying the levels of low-affinity signalling
molecules does not affect the threshold (Supplementary Fig. 1C). Never-
theless, the probability of collisions that lead to the tight-binding complexes
should approach zero on either increasing the low-affinity signals or low-
affinity receptors.Without low-affinity binders, the relation betweenB0 and
AB is linear until A is exhausted (Supplementary Fig. 1D). Thus, the signal
threshold is dependent on the level of low-affinity receptors in the system,
whereas the amplitude of the signal is determined by the number of
receptors.

Iyer et al. (2022)14 analysed the specificationofdifferent cell typesunder
the influence of the Wingless morphogen gradient. They proposed that
cellular compartmentalization and receptor promiscuity were critical to
elicit a specific response to confer unique cell type identities. Interestingly,

this was experimentally verified using the modulators of Wingless activity,
Dally andDally like (Bi), which compete with the Frizzled-2 (B) receptor for
Wingless (A) binding. The herd regulation model supports and extends
these observations by providing a straightforward mechanistic explanation
for the observed phenomena. We also suggest the presence of undocu-
mented low-affinity binders of Frizzled-2 (Ai). In general, our model could
be applied to a number of such biological systems where the outcome is
contingent upon molecular thresholds.

In this section, we have investigated two biological scenarios in which
herd regulationmight play a role. In the next section, we provide the design
of an experiment which can validate the general concept of herd regulation.

Experiment to validate herd regulation based on DNA–DNA
interaction
Our model of herd regulation holds for all types of molecular associations
such as protein–protein, protein–DNA, DNA–DNA interactions etc. The
binding affinity between single-stranded DNAs can be designed based on
complementarity and melting temperature. Here we present the results of
herd regulation in DNA–DNA interactions. In this example, each ofA, B,Ai

and Bi are single-stranded DNA (Fig. 7). The sequences are such that the
binding affinities are in the order, AB >ABi, ~=AiB >AiBi. Also, the
sequences are designed to minimize the self-complementarity and binding
affinity of AAi and BBi.

The binding affinities between the species are controlled bymismatches
between the sequences (i) At the experimental temperature, the ΔG of
binding of each combination corresponded to the binding energy. (ii)
Hybridization of ssDNA from two different species results in a unique
restriction site (i.e. this location in the sequence has mismatches in all other
combinations)

Fig. 5 | Model of sex determination with one set of low-affinity binders. The
amount of activating and repressing complexes formed when time = 100 units, at
different starting values of XSEs and repressors (panels A and B, respectively). The
ratio of time taken by males vs. females to activate Sxl-Pe (XSEs occupy 90% of all
available Sxl-Pe binding sites) (panel C). Panel D shows the distribution of time

taken for male and female cells to activate across a population of 10,000 cells. The
simulations were replicated 50 times for each data point in panels A and
B (individual data points shown as scatter of the same colour), and 10,000 for
panel C.
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Let the unique restriction sites in AB, AiB, ABi and AiBi be, RE1, RE2,
RE3 and RE4, respectively. Before hybridization, each of the ssDNA (easily
procured as oligonucleotides) is converted into circular ssDNA using a
ssDNA ligase. These circular ssDNA, which correspond to A, B, Ai and Bi,
are incubated together at the experimental temperature till equilibrium.
After this, the reaction is quickly cooled to a temperature well below the

lowest melting temperature to avoid any deviations from equilibrium. This
should result in a mix of AB, AiB, ABi and AiBi products. To measure the
concentrations of each product, four equivalent aliquots aremade from this
reactionmixture. Tomeasure the amount ofAB, the enzymes RE2, RE3 and
RE4 are added to one of the aliquots to linearize double-stranded DNA
corresponding to AiB, ABi and AiBi. The linear dsDNA is then removed by

Fig. 6 | Modelling signalling thresholds in biological systems. All traces (averages
of 50 replicates, individual data points shown as scatter) show the relationship
between the active receptor and the number of signal molecules and low-affinity
complexes at different starting levels of the signal. Panel A shows this relation at

three different starting receptor levels. Panel B shows this relation at different
starting levels of the low-affinity receptor. Plots are averages of 50 replicates and the
scatter of the same colours shows the individual data points.

Fig. 7 | Schematic of the experiment to validate the
effect of herd regulation.DNA strands are coloured
blue, red, black, and green forA,B,Ai andBi. red and
black squares and circles represent different
restriction sites and corresponding restriction
enzymes. Different steps of the reaction are shown
on the left-hand side.
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digestion using exonucleases. This is repeated for the other 3 products by
using the enzyme combinations RE1, RE3 and RE4 for AiB; RE1, RE2 and
RE4 for ABi, and RE1, RE2 and RE3 for AiBi. The products of this step
contain the circular dsDNA of only one complex. DNA purification
removes protein and buffer remains from enzyme reactions. The con-
centration of DNA is then measured using UV spectrophotometry at
260 nm wavelength or by real-time PCR experiments.

This experimental method allows us to measure the steady state of the
system after manipulating the concentrations and binding affinities of each
of the reactants individually.Different reactionswithdifferent combinations
of binding affinities and concentrations can be set up such that our results
from steady-state (Figs. 1E, 2E and 6) can be replicated.

Discussion
Molecular investigations of biological processes almost always focus on
interactions that are high affinity and specific. Seldom, if at all, is any
importance given to interactions of low-affinity/specificity. In part, this
could be due to our inability to detect such interactions. In this study, we
examine how the presence of low-affinity interactors modulates the asso-
ciation of high-affinity interactors. We term such modulation of tight-
binding events by low-affinity interactors as ‘herd regulation’.

To illustrate herd regulation, we have considered a simple systemof two
interactors (AandB) that come together to formadimeric complex (AB).The
kinetics of AB formation were modulated in the background of low-affinity
interactors tobothAandB (Bi andAi, respectively). In this case,we found that
the rise timeof theAB complex increaseswith changes in the levels of the low-
affinity interactors. Surprisingly, we find situations where AB is not the
dominant product of the reaction, despite KD of AB being several orders of
magnitude higher. Ai and Bi, when acting alone, without the presence of the
other (Fig. 1), areweakbinders andofferweakcompetition.Onlywhenacting
in consort (Fig. 2) do they become potent competitors. This can be explained
by the lack of monomeric A and B in the system, as all available A and B are
consumedby the formation ofAB,AiB andABi. This is the case sinceA andB
contribute to the formation of two complexes each, whereas Ai and Bi are a
partofonlyonecomplexeach.Thus, theproductsof thedissociationofAiBor
ABi have a higher probability of encountering Ai or Bi compared to A or B.
This study effectively predicts the ranges of both the concentrations and
dissociation constants atwhich herd regulationwould be effective. In general,
herd regulation is affected by thequantity of the low-affinity binders aswell as
their respective binding efficacies (quality). Interestingly, our data argues that
the quality ismore impactful than the quantity.We successfully reproduce all
of these results almost exactly using a separate continuous method.

In our simulations, we have demonstrated herd regulation of a binary
interaction of A and B (giving AB) with interference from low-affinity
competitorsAi andBi. In the crowded cellular environment, reactions could
be more complex, involving multiple reactants with varying stoichiometry.
It is thus relatively straightforward to imagine that herd regulation would
impact such complex interactions more than it does the simple AB system.
Theother important aspect here is that the low-affinity competitors couldbe
multiple species. For instance, the interactor A could have many homo-
logous or structurally analogous molecules in the cell, all of which could
collectively constitute the Ai. Given the sizes and abundances of protein
families, and the comparatively low number of folds, our estimates of the
levels of the low-affinity competitors are conservative. Please note that
similar arguments would also hold for herd regulation involving different
types of molecules such as DNA, RNA, etc.

Unlike our simulations, in a cell, all the potential interactors may not
coexist or be active at the same time. It is conceivable that before one of the
strong binding interactors is introduced into the system, the other binding
partner and the low-affinity interactors are already present. Such a situation
would only magnify the effects we have discussed above. i.e., the relative
rates of reactions could be slower thanwhatwe have simulated, and the time
taken to equilibrate the system would be longer. For instance, during sex
determination inDrosophila, theDNAbinding sites in Sxl-Pe exist in the cell
even when the XSEs are absent. In this situation, it is reasonable to assume

that these DNA binding sites are bound to a cohort of low-affinity repres-
sors. The XSEs produced during early development (nuclear division cycles
7–13)will have to displace the low-affinity binders for theDNAbinding site
to activate Sxl.

In our computations that study kinetics, we have assumed that the
forward rate constants (kforward or kf) for the high and low-affinity inter-
actors are the same. This is not an unusual circumstance in biological
processes. For instance, proteins that recognize specific sequences of DNA
initially bind non-specifically and diffuse along the DNA to its cognate
binding site33–35. Even, non-specifically binding proteins would also have a
similar rate of association with the DNA as specific binders32,36. The rates of
dissociation, however, are vastly different and determine the binding affi-
nities. A similar argument can be made regarding protein–protein (or
protein-peptide) and protein–RNA interactions, especially if the binding
was predominantly due to complementarity in electrostatics. In the studies
of equilibrium/steady state, this assumption of comparable forward rate
constants is not required. This is because the equilibrium state is only
dependent on the dissociation constant and starting concentrations of the
reactants.

It should be noted that the herd regulation model presented in this
study is basic. We built such a model to set up a platform where one could
build in additional constraints for future investigations. Such future direc-
tions include (i) The effect of herd regulation on oligomerization and/or
polymerization reactions and (ii) our models demonstrate regulation when
there is a fixed quantity of the reactants. A more realistic model would also
incorporate rates of their production and degradation; (iii) Modelling
interactionswhere there are transition states andmore involvedkinetics. (iv)
Proving herd regulation experimentally would constitute a significant
challenge as low-affinity interactors are mostly undetected. We have
addressed this by suggesting an invitro experiment involving circular single-
stranded DNA. We believe that these experiments could validate the find-
ings reported in Figs. 1 and 2. We also have a suggestion for an in vivo
investigation (see below). The present study lays down the basis to inves-
tigate such questions, which is otherwise beyond the scope of this study.

We have illustrated herd regulation in a biological context with two
examples and also suggest one ‘in vitro’ experimental strategy to verify the
model. In one example, we use protein–protein interactions akin to signal-
receptor activation and in the other, we use DNA–protein interactions to
illustrate sex determination in Drosophila melanogaster.

In the example of signalling, we resort to our simple AB model (A =
receptor,B = signal or a ligand). The signal (B) can bind its cognate receptor
A or any of the low-affinity competitive/homologous receptorsAi. OnceB is
at a level (threshold) where it has saturated all the A and Ai’s, the kinetics is
only dependent on the level of Bi (low-affinity competing signals). Thus,
exhaustion ofAi switches the system, fromherd regulation influencing both
the tight binders to one where it affects only a single tight binder. Thus, the
threshold is primarily dependent on the amount of Ai, the low-affinity
receptor, present in the system. This formulation also helps explain earlier
observations and computations where the presence of promiscuous
receptors (Ai) determines cell fate in Drosophila melanogaster
development14. Note that our model is significantly simpler than the model
proposed by Iyer et al which required invoking compartments and sig-
nificantlymore rate equations to explain this phenomenon.We can explain
this with three simple Eqs. (9)–(11). This also simplifies the evolution and
design of molecular switches. Consider A, B, Ai and Bi, where A and B
interact strongly, whereasAi and Bi are homologues ofA and B, which have
partially similar binding sites and thus interact with A and B and with each
other. This system will become a molecular switch if there are mutations
(engineered or evolved) in the binding interface such thatAiBi is not formed
(see first two result sections and Eqs. (1)–(4).

In the example of sex determination, we analysed a binary switch
gene, Sxl, whose activity confers female identity. Sxl activity is primarily
affected by the presence of X-linked signalling elements (XSEs) and
autosomal repressors. XSEs are derived from the X chromosome. Thus,
females with twoX chromosomes activate Sxl-Pewhile the Sxl-Pe ofmales
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remains inactive. Sex determination is dependent on the activity of Sxl-Pe
at the end of the syncytial blastoderm stage of embryogenesis (NC10-13).
We have modelled sex determination considering the binding sites in Sxl-
Pe asA, XSEs asB and the autosomal repressors as low-affinity interactors,
Bi. Note thatmany of the Sxl-Pe binding sites are concentrated within 400
base pairs in the promoter37. We found that the presence of low-affinity
binders temporally resolves Sxl-Pe activation between males and females.
XX and XY genotypes would determine female and male states, respec-
tively, as long as the cellularization occurs at a time point between male
and female activation. The primary factor that allows for this temporal
decision is the amount of XSEs, the cell cycle at which cellularization
happens and the amount of low-affinity autosomal repressors present in
the system. Among these, the amount of XSEs and timing of cellulariza-
tion has been experimentally perturbed. Mutations in XSE genes are
detrimental to females10. Delayed cellularization generates embryos with
more Sxl-Pe activation and vice versa38. It would be interesting to see the
effect of perturbing the low-affinity binder levels in vivo, although this
would require the identification of multiple low-affinity binders, which
would need to be mutated simultaneously. Hypothetically, changing the
level of the low-affinity repressors (herd regulators) could affect themale-
female ratio in a population (see Supplementary Fig. 3 for distributions of
Sxl-Pe activation at different low-affinity repressor levels). Since the sex
determination decision is made individually in each nucleus in an
autonomousmanner, this effect shouldmanifest as amosaic phenotype as
those shown in ref. 38. The presence of such repressors is our prediction.
The role of deadpan (dpn) andgroucho (gro) asweaknegative regulators is
already reported9,27–30. However, gro does not bind DNA directly and
needs to be recruited to the promoter, and neither deadpan nor gro is
active in all the cells (sex determination decision happens in all the cells).
We speculate that the unknown entities responsible for the recruitment of
gro, along with other yet unknown entities, have a combined ‘herd’
repressive effect on the promoter. Our model of sex determination can be
validated only after these low-affinity repressors are identified.

It will be important to consider these data in a broader, more general
context. Even a cursory examination should reveal that binary decisions
constitute important cornerstones of biological systems both at the ‘micro’
and ‘macro’ levels. It is noteworthy that many of the early foundational
discoveries, especially in the field of developmental genetics, were aimed at
uncovering the presence of a single master determinant that functions as a
molecular switch. (Sxl is just one such example of the several well-
documented ‘master-switch genes’). As the proper execution of the down-
stream molecular processes is critically dependent on early choice, these
binary switches have proven to be highly effective means to regulate major
outcomesof a variety of determinative events.Notwithstanding the benefits,
however, one ought to consider a few important caveats that are readily
overlooked while considering biological relevance and regulation of binary
mechanisms that underlie fate determination. The genetic and biochemical
strategies aimed at the identification and characterization of canonical bio-
switches (and their regulatory components) invariably rely on phenotypes
that are extreme. For instance, the genetic screens that identified regulators
of sex determination relied on either male or female-specific lethality. (The
nomenclature of the relevant mutations daughterless, sisterless a, b, etc.,
effectively underscores this feature.) As the detection of relevant mutations
relied on highly penetrant sex-specific lethality, a number of potentially
interesting albeit weak mutations were likely dismissed. Their detection is
only possible upon simultaneous deletion or addition of multiple weak
affinity factors as approximated in our computational approach.

We have also observed an overlap in the distribution of time taken for
male and female Sxl activation. This suggests that binary switch systems are
not strictly binary. Their outcome is actually two states that, in many cases,
can have small (but not insignificant) overlaps. This becomes especially
important in the case of cell-autonomous determinative events. For
instance, the sexof every single cell in aDrosophila embryo is independently
determined by the total concentration of X-chromosomal elements. As a
result, gynandromorphs consist of cells of both sexual identity and, on rare

occasions, can survive even up to adulthood.While every instance does not
result in adramatic anddemonstrable outcome suchas this, it is conceivable
that several cells of the ‘wrong sex’may be determined in an organism and
are eventually eliminated (or rendered ineffective) without any detectable
consequence. Analogous scenarios can be envisaged in other biological
contexts, i.e., a few haltere-like cells could co-exist in wings, or some neu-
rons may exhibit partial epithelial traits. Such heterogeneity has been well
documented in primordial germ cells in blastoderm stage Drosophila
embryos while its relevance remains to be determined.

Canonical models suggest that both the initiation andmaintenance of
the binary switch genes follow a stereotypical path toward a unified out-
come. Altogether, while binary decisions may lead to invariable and robust
outcomes at amacro- or organismal level, cellular heterogeneity likely exists
at a micro- or cellular level. Mechanisms ought to be in place that do not
allow such variability to exceed permissible limits leading to detrimental
biological consequences. Importantly, the tolerable threshold may differ
vastly depending on the cellular or organismal contexts. The mechanistic
underpinnings and biological relevance of such mechanisms need closer
scrutiny and careful consideration as these representmolecular hurdles that
are likely essential components of homeostatic mechanisms.

Code availability
All scripts/programs used in this study, along with the data they have
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Data availability
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