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Abstract 

We read the genome as proteins in the cell would – by studying the distributions of 5–6 base motifs of DNA in the whole genome or smaller 
stretc hes suc h as parts of, or whole c hromosomes. This led us to some interesting findings about motif clustering and c hromosome organization. 
It is quite clear that the motif distribution in genomes is not random at the length scales we examined: 1 kb to entire chromosomes. The observed- 
to-expected (OE) ratios of motif distributions show strong correlations in pairs of chromosomes that are susceptible to translocations. With the 
aid of examples, we suggest that similarity in motif distributions in promoter regions of genes could imply co-regulation. A simple extension of 
this idea empo w ers us with the ability to construct gene regulatory netw orks. Further, w e could make inferences about the spatial proximity of 
genomic fragments using these motif distributions. Spatially proximal regions, as deduced by Hi-C or pcHi-C, were ∼3.5 times more likely to ha v e 
their motif distributions correlated than non-proximal regions. These correlations had strong contributions from the CTCF protein recognizing 
motifs which are known markers of topologically associated domains. In general, correlating genomic regions by motif distribution comparisons 
alone is rife with functional information. 
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ntroduction 

he human nuclear genome comprises a vast sequence of 3.2
illion base pairs of DNA, organized into 23 or 24 distinct
hromosomes. This sequence serves as the fundamental code
hat underpins the operation of the intricate biological ma-
hinery within the cell. Based on the T2T-CHM13 reference
 1 ), a comprehensive annotation effort has identified a total of
3 494 genes within the human genome. This count includes
oth protein-coding genes, pseudogenes, hypothetical genes
nd functional RNA (long non-coding RNA, microRNA etc.)
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genes ( 2 ). Genic regions are however only a small fraction of
the genome, which predominantly comprises non-coding re-
gions ( 3–5 ). These non-coding parts of the genome harbour an
abundance of repetitive DNA, such as transposable elements
( 6 ) and contain valuable information on disease-causing mu-
tations ( 7 ), genetic variations ( 8 ,9 ) and evolutionary conser-
vation ( 10 ,2 ). Analysing genomes for all of the characteristics
mentioned above usually involves aligning sequence stretches
to one another. In this study, we offer an alternative yet simple
method to ‘read’ the genome. 
mber 5, 2024. Accepted: November 15, 2024 
c Acids Research. 
ons Attribution-NonCommercial License 
ial re-use, distribution, and reproduction in any medium, provided the 
up.com for reprints and translation rights for reprints. All other 
ink on the article page on our site—for further information please contact 

https://doi.org/10.1093/nar/gkae1178
https://orcid.org/0009-0004-7924-2244
https://orcid.org/0000-0002-2889-5884


2 Nucleic Acids Research , 2025, Vol. 53, No. 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/53/1/gkae1178/7919520 by IISER

 Pune user on 07 July 2025
The regulation of the transcriptome inside the nucleus is
complex ( 11 ). For instance, genes and their corresponding
regulators may be sequentially distant but spatially proximal
( 12–14 ) as the regulation is coordinated by proteins. Different
techniques are used to investigate this spatial organization,
protein-genome interaction and chromatin accessibility such
as 3C techniques ( 15 ), Hi-C ( 9 ,16 ), Dam ID ( 17 ,18 ), Chip-
Seq ( 19 ,20 ), A T AC Seq ( 21 ,22 ), super-resolution imaging ( 23 )
and integrative genome modelling ( 24 ,25 ). 

The resolution of the information from the techniques men-
tioned above is usually in the range of 10–100 kb. Investigat-
ing genome stretches of size 10–100 kb, especially with the
intent of gaining insights into genome organization / function
poses several difficulties. Firstly, the 10–100 kb size range is
very low resolution, given that DNA binding proteins engage
directly with just a few base pairs. Secondly, even if one were
to look for sequence conservation and / or patterns, 10–100
kb is a significantly large stretch compounded by the fact
that the DNA alphabet consists of only four letters. Sequence
alignments of such large stretches are often poor indicators of
functional conservation. Even two randomly chosen sequence
stretches of ∼10–100 kb could be ∼25% identical. There-
fore, identifying and comparing sequence patterns necessitates
a focus on shorter sequence sizes. Alignment-free methods,
such as k-mer or word frequency estimation, offer alterna-
tives where sequences are processed in moving windows of a
specified word length ( 26 ,27 ). Notably, this approach does not
hinge on positional information of bases in sequence. How-
ever, it proves valuable for comparing lengthy sequences, al-
lowing the calculation of word density to determine the sim-
ilarity or dissimilarity between two sequences ( 28 ,29 ). This
method provides a practical means for assessing sequence pat-
terns without relying on extensive alignments, particularly
suited for analysing large genomic regions. In this study, we
used a modification of the k-mer method to compare genome
segments. 

Binding patches on proteins typically recognize 5–6 bases
of DNA (S. Nair and M.S. Madhusudhan, unpublished
results: doi:10.1101 / 2022.05.19.492702). Our observation
from all known DNA bound protein complexes in the Pro-
tein Data Bank (PDB) is that at the points where proteins
contact DNA specifically, the interactions only span 5–6 nu-
cleotides. However, there are several reports of larger DNA
sequence motifs recognized by proteins ( 30 ,31 ). These hap-
pen in cases where the protein could oligomerize and hence
recognize several, seemingly contiguous patches of DNA that
are larger than 6 nucleotides. It could also happen when DNA
wraps around a protein making contacts at different faces
( Supplementary Figure S1 ). Our observation is that for ev-
ery contact only 5–6 nucleotides are involved in base specific
recognition such as hydrogen bonding. Hence, we focussed on
sampling motifs of 5–6 bases of DNA and read the genome at
that resolution. We used the term motif to represent an n-mer
assuming that all n-mers are potential motifs for some cognate
protein(s). In this study, we first analysed motif distributions
of different sizes (from 2- to 6-mers). We then compared this to
a randomized genome to show that patterns in real genomes
are distinct. We examined patterns of motif distributions in
whole genomes / chromosomes and in smaller regions such as
centromeres and gene promoters. We correlated pattern distri-
butions in gene promoter sites and established relationships
between genes that are likely to be co-regulated. Sometimes
when protein interact with DNA, the DNA could bend or al- 
ter its conformation from the regular B-form ( 32 ,33 ). That 
notwithstanding, in this study we are assuming that a partic- 
ular DNA motif when binding to its cognate protein would 

always undergo the same recognition shape change. 
We corroborated our findings, using three case studies. In 

the first case study, we selected three genes, LPHN1 (AD- 
GRL1), CDK9 and TRIM8, that exhibited high correlation 

based on our motif abundance analysis and compared them 

to a network map using NetworkAnalyst ( 34 ,35 ). We identi- 
fied two common transcription factors to all three genes, thus 
validating not just our method of constructing gene networks 
but also discovering the functional importance of such con- 
nections. For the second case study, we focused on a larger list 
of 19 genes coregulated by the transcription factor(s) Jun / Fos.
The analysis here showed that we could predict differen- 
tial gene regulation. In the final case study, we investigated 

whether gene co-regulation implied co-localization by com- 
paring our results to Hi-C ( 36 ) and promoter capture Hi-C 

( 37 ) data. We found a strong correlation between our scoring 
and the spatial positioning of genome segments, reinforcing 
the significance of our methods. 

Materials and methods 

Data of genomic sequence(s) and the gene annotation, for 
all calculations was obtained from NCBI RefSeq Human 

Genome assembly T2T-CHM13v2.0. ( 38 ,39 ) 

Motif generation and distribution metric scoring 

To assess the enrichment of specific motifs within certain re- 
gions, we employed the observed-to-expected ratio (OE ratio).
The OE ratio is a measure of whether a feature is over or un- 
derrepresented in a given dataset. It is calculated by normaliz- 
ing the observed frequency of the feature by the expected fre- 
quency based on the probability of occurrence. For a sequence 
stretch of base pairs, we can ‘read’ it using a window (motif 
size) of n base pairs. The number of times a motif occurs in the 
sequence stretch is recorded as the observed count (O). The ex- 
pected count (E) of any motif is ( N − k + 1 ) 

∏ 

x 
f nx 
x , where nx 

is the number of times a particular base occurs in a motif and 

whose probability is f x and N is the size of the chromosome.
The OE score is thus a normalized metric taking into account 
the AT / GC richness of a chromosome. Given that there are 
four bases (A / T / G / C), the number of motifs of size k , which
we refer to as k-mer count, would be 4 

k . Here we average the 
OE values for motifs and their reverse complements. These 
averaged OE ratios taken together are called the motif vector.
We recorded the observed count of motifs and then computed 

the OE ratio for the following sequence stretches: 

• OE whole : Here the sequence stretch is the whole chromo- 
some. 

• OE nkb : Chromosomes are divided into bins of n kb. The 
last bin of any chromosome may contain less than n kb,
while all other bins are exactly n kb in length. 

• OE centromere : Only the centromeric regions were consid- 
ered. The boundaries of centromeric regions in the dif- 
ferent chromosomes were taken as defined in the NCBI 
genome data viewer and UCSC genome browser ( 39 ,40 ) 
( Supplementary Table S1 ). 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
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• OE promoter : We sampled three different sequence
stretches in the 5’ untranslated region (5 

′ -UTR) that we
define as promoter proximal control regions. For sim-
plicity we refer to this as promoter regions in the rest
of the text. These were 1, 2 and 6 kb upstream of the
gene transcription start site and denoted as OE 1 kb_kmer ,
OE 2kb_kmer and OE 6kb_kmer , where motif size k = 5 or 6.
We obtained the gene start and stop coordinates from
the NCBI RefSeq gene annotation ( 39 ,40 ). 

• OE random 

: For different computations (as expounded
in the results), it was necessary to scramble a sequence
stretch and rerecord the observed count. To do this, the
sequences of entire chromosomes were shuffled (ran-
domized). The procedure for randomization is men-
tioned in the ‘Materials and methods’ section. 

Note that in all these computations, the observed count is
aken from the different sequence stretches while the expected
ount is computed based on chromosome size ( N ) and is the
ame across all computations (for a particular chromosome). 

orrelating motif vectors 

he correlation between two motif vectors, X and Y, is com-
uted as: 

ρX , Y = 

cov ( X , Y ) 
σX ×σY 

where cov ( X , Y ) 

= 

∑ 

( X − μX ) × (Y − μY) (1)

Where cov ( X , Y ) is the covariance, ( μX and μY ) and ( σX
nd σY ) are the means and standard deviations of OEs of mo-
if vectors X and Y , respectively. 

enerating random genome 

o randomly generate DNA sequences of different chromo-
omes, we used the random module of python3 and ensured
eighted random nucleotide selections. This procedure gen-

rates random sequences of chromosomes of the same size
nd base probability as the wild type. The random genome
onstructed thus has the same nucleotide composition as the
riginal, just scrambled in sequence. 

inding Hi-C contacts with genes 

i-C data were obtained from GEO accession number
SE18215 (in .mcool format), where chromosomes were di-
ided into uniform bins of different sizes. We chose to use data
rom the bins of the smallest size (highest resolution), 10 kb.

e extracted pairs of 10 kb bins from the data where cross
inks were recorded between chromosomes 18 and 19. 

For the promoter capture Hi-C (pcHi-C), we extracted the
hromosome contact start-stop coordinates from the .bedpe
les from GEO accession number: GSM1704495. From the
CBI gene annotation for the corresponding reference assem-
ly used in mapping the contacts, we obtained the gene coor-
inates that overlap with the contact regions between the two
hromosomes. For the gene pairs that fall in the region of con-
acts, we obtained the promoter correlations according to our
otif vector calculations at the different aforementioned pro-

oter sizes. 
Results 

Motif preferences as assessed by the OE ratio 

We had previously established that protein binding stretches
in genomic DNA span 5–6 nucleotides ( 41 ) ( Supplementary 
Figure S1 ). So, in this study, we have read the genome at this
length scale, i.e. at biologically relevant DNA motif sizes. To
begin with, we read the genome with motif sizes of 2–6 nu-
cleotides. The aim here was to check the effective size of mo-
tifs that would confer specificity to DNA–protein binding. We
noticed that as the motif size increased from 2 to 6, the num-
ber of motifs with high OE whole ratio values increased (Figure
1 A and Supplementary Figure S2 ). While the trend is mono-
tonic, we did not explore beyond 6-mers as this is the optimal
protein recognition size and we believe that all specificity dis-
criminations are likely to occur at this length. The inference
here is that the larger the variation in the OE whole ratio val-
ues, the more pronounced the patterns of occurrences of these
motifs. This in turn has implications on how different proteins
would engage with different parts of the genome. 

For the rest of this study, we concentrate on 5- and 6-mer
motifs. We next looked at the OE whole ratio of 5- and 6-mers
for all individual chromosomes (Figure 1 B and C). While con-
sidering OE ratios we averaged the values of a motif and that
of its reverse complement as we are looking at double stranded
DNA. Hence, we got 512 different motifs of 5-mers and 2080
motifs of 6-mers. [The number of 6-mer motifs and their re-
verse complement pairs is not exactly half of all possible mo-
tifs (4096) because palindromic motifs are identical to their
reverse complements.] There are two appreciable patterns to
discern here: (i) Certain motifs are less abundant in the whole
genome while others are present in large abundance, as in-
ferred from their OE whole ratio values. For many motifs, these
patterns of abundance hold across the different chromosomes.
For instance, the 6-mer motif CCCAGC has high abundance
in all chromosomes. The CCC A GC AG is a binding site for the
zinc finger, ZNF143 ( 42 ), a protein involved in 3D genome
construction. (ii) There are variations in the OE whole ratio val-
ues for the same motif across chromosomes. We clustered the
chromosomes based on their motif distribution similarity (rep-
resented as dendrograms in Figure 1 B and C). The gene den-
sity (number of genes per Mbps of a chromosome) of indi-
vidual chromosomes is independent of the chromosome clus-
tering based on the motif OE ratios (Figure 1 B and C and
Supplementary Figure S3 ). We find that the clustering of chro-
mosomes when considering 5-mers or 6-mers is similar (with
minor rearrangements). Chromosomes 2–8, 10–12, 14, 18, 20
and X are all more closely related to one another than to the
others. Among the others, (17, 19, 1, 15, 16), and (13, 21, 22)
form smaller sub-clusters of similar chromosomes. Chromo-
somes 9 and Y are the two most distinct ones and bear the least
resemblance to the others (see Supplementary Figure S4 A for
pairwise correlations). 

On closer inspection, it is clear that each chromosome has
its unique pattern of motif abundance. For instance, it is plain
to see that the 5-mer and 6-mer motif abundances of chro-
mosome 9 and Y are starkly different from the other chro-
mosomes (Figure 1 B and C and Supplementary Figure S4 A).
Chromosome 9 is known for its significant structural variabil-
ity, housing the largest autosomal block of heterochromatin
( 43 ). Within this region, gene locations exhibit a distinctive
pattern, with individual genes scattered among stretches of
repeated sequences ( 44 ,45 ). The case is similar to chromo-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
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Figure 1. The distribution of OE whole ratios for motif size 2–6 ( A ) The OE ratios are limited to the range from 0 to 8 and motifs of sizes 2, 3, 4, 5 and 6 are 
represented in different colours. Heat maps of OE whole ratios for motif size 5–6 [panels ( B ) and ( C ), respectively] across the different chromosomes 
shown in log scale. The log (OE) ratios are coloured red through to blue (colour legend) where red and blue indicate values of > 1 and < 1, respectively. 
T he dark er the shade of the red (or blue) the higher (or lo w er) the ratio. T he 512 and 2080 motifs f or 5-mers and 6 mers respectiv ely are arranged 
according to GC content, which increases going from bottom to top. In panels ( B ) and ( C ), only a few representative motifs (and their reverse 
complements) are labelled. Shown alongside the motif labels are their GC contents. The dendrogram represents the clustering of chromosomes based 
on the similarity in motif distribution. A colour bar of gene density is shown at the bottom of panels ( B ) and ( C ). The denser is the gene content the 
redder is the colour bar. 
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some Y, which is known to have the maximum occurrences or
repeat regions ( 46 ). These results suggest the possibility that
different parts of the genome are recognized differentially, pre-
sumably, by different proteins ( 47 ). These recognition events
in turn could differentially regulate gene expression and other
molecular functions ( 48 ). 

The distribution of motifs in chromosomes is 

non-random 

From the results above it is clear that motifs are present with
different abundances in the different chromosomes. What is
also clear is that while some broad conservation patterns may
exist, the motif distribution in individual chromosomes is dis-
tinct. Within each chromosome, sub-regions have different
distributions of the motifs, as seen in the 6-mer motif distri-
bution along 100 kb stretches of chromosome 18 (Figure 2 A).
Details of the distribution of 5- and 6-mer motifs for all chro-
mosomes are presented in supplementary data. Chromosome
18 has ∼80.3 Mb, which were divided into regions of 100
kb. We retained the same composition of bases and randomly
scrambled the sequence of the whole chromosome (Figure 2 B).
The distinct patterns visible in the real distribution (OE 100 kb )
are no longer apparent in the scrambled sequence (OE random 

).
We did the randomization multiple times) and in each such at-
tempt, the distinctness of the pattern of the real chromosome
(in 100 kb bins) was absent ( Supplementary Figures S5 and
S6 ). The only discernible pattern in the randomized chromo-
some is the similarities of motif distributions of distinct GC
content. It is interesting to note that the bin wise motif distri-
bution is distinctly different in regions that correspond to the
centromere ( Supplementary Figure S5 ). The centromeres can
be easily distinguished in each of the chromosomes. This can
be attributed to the satellite repeat regions in the centromeres 
( 49 ). 

As mentioned above, the pattern of motif abundances var- 
ied not just across chromosomes but also within chromo- 
somes. While this is evident for 100 kb bins across the length 

of chromosome 18 (OE 100 kb distribution in Figure 2 A), we 
next investigated centromere regions on all chromosomes. The 
boundaries of centromeric regions of the different chromo- 
somes were taken as defined in the NCBI genome data viewer 
and UCSC genome browser ( 39 ,40 ) ( Supplementary Table 
S1 ). Here again, it is clear that the centromeric regions dis- 
play distinct motif distributions. The OE centromere distributions 
across the different chromosomes of the genome are differ- 
ent (Figure 2 C). For instance, the acrocentric chromosomes 
13, 14, 15, 21 and 22 have a distinctly different OE centromere 

pattern ( 40 ) (Figure 2 C and Supplementary Figure S4 B). It is 
known that the short arms of these acrocentric chromosomes 
are abundant with segmental duplications ( 50 ), which could 

be the explanation for our observation. 
We next compared the centromere regions to the same re- 

gions in the randomly scrambled chromosome sequences (Fig- 
ures 2 D–F). Here too, the difference between the motif dis- 
tribution patterns in the real centromere (OE centromere ) and 

the centromere from the scrambled chromosome is clear –
the centromere from the scrambled sequences are not distinct 
across chromosomes. We triplicated this result for confidence 
(Figures 2 D–F). 

We have established that motif distributions in chromo- 
somes are not random and that such distributions are also 

different in different sequence segments within each chromo- 
some. This gives further credence to the point made earlier 
that the distinct motif distributions ensure differential bind- 
ing by the different protein partners. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
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Figur e 2. P anels ( A ) and ( B ) sho w the OE 100 kb and OE random 

heat maps f or chromosome 18 in log scale respectiv ely. Heat maps of the log v alues of 
motif OE centomere ratios of 6-mers for centromeric regions in all chromosomes [panel ( C )]. The randomized sequences of the same centromeres are 
shown in panels ( D )–( F ). As in Figure 1 , only representative motifs and their reverse complements are labelled and their GC content is shown alongside 
The colour coding and the arrangement of motifs is the same as in Figure 1 . 
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ene correlations deduced from promoter motif 
istributions 

n the next few sections, we concentrate on the 63 494 genic
egions, as identified by the T2T CHM13 reference assembly.
e variously defined promoter proximal control regions (pro-
oters for short) associated with a gene as the regions 1, 2 or
 kb upstream of the gene transcription start site. These pro-
oter sizes were chosen considering a conservative estimate (1
b), a maximum known effective size (6 kb) ( 51 ) and a value
n between (2 kb). 

We considered the relative abundances of all motifs (sep-
rately for 5-mers and 6-mers) as motif vectors. The coeffi-
ients of the vectors are the 512 and 2080 OE Xkb_k-mer val-
es for k-mers (k = 5 and 6) respectively, where X is the size
f the upstream regions considered as promoters. All versus
ll gene promoter motif vectors were correlated ( equation 1 )
nd the results were collated chromosome-wise (Figure 3 ).
f the ∼4 billion possible gene–gene motif vector correla-

ions, about ∼1 million have correlation coefficients ≥0.9.
The numbers are of a similar order for 6-mers and for dif-
erent promoter sizes – 2 and 6 kb; see supplementary data
f promoter correlations above 0.9.) We decided to impose
his stringent cut-off to ensure that the genes with correlated
romoters are chosen stringently and practically this would
ean that we only deal with a small fraction ( ∼0.25%) of a

ery large dataset. As the promoter size increases from 1 to
 kb the baseline of correlations changes while the trends re-
ain the same ( Supplementary Figure S7 A–E and supplemen-

ary data of promoter correlations above 0.9). The baseline
otwithstanding, some features of chromosome-chromosome
correlations stand out. Most of the high correlations between
gene promoter motif vectors are from within the same chro-
mosome. This is understandable as genes that are function-
ally related are often found in the same chromosome and in
close proximity to one another. On average the number of
intra-chromosome gene promoter correlations above 0.9 is
∼920 per chromosome pair (when considering 5-mers with
1 kb promoters). This signifies that on average 920 gene pairs
from two different chromosomes are correlated with coeffi-
cients ≥0.9. The maximum number for inter-chromosomal
gene promoter correlations is 36, 408 between chromosomes
13 and 21, while the minimum is 0 between chromosomes Y
with 1 and 19 (supplementary data of promoter correlations
above 0.9). 

These correlation data are vast and we are only going to
present a figment of it in this study. These data can be in-
terrogated to answer various questions about gene associa-
tions. What is of interest to us here are the inter chromosome
interactions. There are genes from different chromosomes
whose promoters have similar motif vectors. This implies that
these genes could be co-regulated. The high correlations, es-
pecially ones with coefficients ≥0.9, could be symptomatic of
interactions. 

Once again the acrocentric chromosomes (13–15, 21 and
22) show strong correlations to one another. We found sev-
eral hundreds of genes in each of the acrocentric chromosomes
whose promoter regions were correlated to one another (see
supplementary data of promoter correlations above 0.9). Of
these, there are 1768, 2216, 2072, 992 and 1310 genes in chro-
mosomes 13, 14, 15, 21 and 22, respectively, that are corre-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
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Figure 3. An inter-chromosome motif vector correlation map of frequency of gene pairs with correlation coefficients > 0.9 for 5 mers with promoter sizes 
of 1 kb. The proportion of correlated genes with a correlation coefficient ≥0.9 are colour coded on a white–y ello w–green–blue gradient. The white end 
represents no correlation while the darker the shade of blue the larger the number of correlated gene pairs. 
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lated to at least two promoters from genes of other acrocen-
tric chromosomes. This is interesting, as not only do the cen-
tromeric regions of these genes show high correlations (see the
‘The distribution of motifs in chromosomes is non-random’
section above), but the promoters of genes in these chromo-
somes show high correlations too. This we believe may be the
basis of Robertsonian translocations ( 52 ,53 ), where the long
arms of these chromosomes are joined to one another ( 52 ,53 ).
If the motif abundance is similar in two regions, it is con-
ceivable that recombination could sometimes result in inter-
changes, resulting in translocations. Ribosomal RNA (rRNA)
genes constitute ∼4–13% ( Supplementary Table S2 A) of the
total genes in chromosomes 13, 14, 15, 21 and 22. Addition-
ally, we also checked what fraction of the total high correla-
tions (Pearson’s correlation coefficient ≥0.9) were contributed
by the rRNA gene pairs from both chromosomes. We ob-
served ∼81–92% of the high correlations are contributed by
the rRNA genes from both the chromosomes for chromo-
somes 13, 14, 15, 21 and 22 ( Supplementary Table S2 B and
supplementary data of rRNA gene correlations). Thus, such
tandem repeats of rRNA genes constitute the conserved pat-
terns across these chromosomes. Additionally, we compared
the similarity in the promoter sequence of the highly corre-
lated genes (Pearson’s correlation coefficient ≥0.9) in chro-
mosomes 13 and 14 (chromosomes reported to be involved
in translocations) versus chromosomes 18 and 19. A total
of 20% of the highly correlated gene pairs between chromo- 
somes 13 and 14 have a sequence identity of at least 80%.
However, there are no gene promoter pairs between chromo- 
somes 18–19 that have sequence identity higher than 37% 

( Supplementary Figure S8 and supplementary data of identity 
versus correlations). This suggests that translocations occur in 

regions where there is strong motif vector correlation as well 
as high sequence identity. 

Another notable gene promoter correlation was between 

chromosomes 4 and 10 where 1017 (supplementary data of 
rRNA gene correlations) gene promoter pairs had a correla- 
tion coefficient above 0.9 (Figure 3 ). A translocation between 

these two chromosomes is also known in certain types of 
leukaemia ( 54 ,55 ) and Wolf–Hirschhorn syndrome ( 56 ). Un- 
like acrocentric chromosomes, the gene promoter pairs does 
not include rRNA genes. However the reason for the translo- 
cation could be the local similarity in the motif distribution. 

As a control, we repeated the analysis in three pairs of chro- 
mosomes for regions 1 kb downstream of the gene and also 

for 1 kb regions chosen randomly from the chromosome. In 

each of these controls, the number of selected regions was the 
same as the number of gene promoter regions. We selected the 
following chromosome pairs: (6, 7, 12, 13) and (11, 18). The 
pair selections were done to include chromosomes of differ- 
ent sizes and gene densities ( Supplementary Figure S3 ). We 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
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Table 1A. Comparison of gene-pair correlation abo v e 0.5 in promoter and 
do wnstream v ersus random bins 

1 kb genomic regions Chr6–chr7 Chr12–chr13 Chr11–chr18 

Promoter 0.98% 1.97% 0.99% 

Downstream 0.59% 0.40% 0.41% 

Random 0.23% 0.18% 0.15% 

Table 1B. Distribution of genes with o v erlapping coordinates in different 
chromosomes 

Chromosome Total genes % overlap 

Chr 6 3086 22.65% 

Chr 7 2891 21.90% 

Chr 11 2995 20.50% 

Chr 12 2575 24.82% 

Chr 13 1768 18.27% 

Chr 18 1022 22.20% 
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ene promoters, downstream regions and randomly selected
egions. 

For the three pairs of chromosomes chosen, there are be-
ween 892 167 and 4 552 601 possible gene–gene correla-
ions. Of these, between 1–2% of the promoter correlations
re ≥0.5 for these three pairs. Interestingly, the correlation be-
ween downstream regions is ∼0.5% in all three pairs (Table
 A and supplementary data of promoter versus downstream
ersus random correlations). This can be partially explained
y the fact that in each of the selected chromosomes, ∼20%
f the genes overlap with one another (Table 1 B). It is likely
herefore that promoters of one gene could be the downstream
egion of another and vice v er sa . Also many closely located
enes may be controlled by a single promoter region. All this
otwithstanding, there are however a significant number of
igh correlations between downstream regions that warrant
urther investigations. The random regions of 1 kb show the
oorest correlations among all three pairs, accounting for less
han ∼0.2% of all correlations. In fact, for the chromosome
air ( 12 ,13 ) none of the randomly chosen 1 kb regions cor-
elate with a coefficient of ≥0.5. It is clear from these data
hat correlations between promoter regions, and to a smaller
xtent regions downstream of the gene, are distinctly different
rom correlating randomly selected 1 kb regions. We also com-
ared the motif vectors correlations (Pearson’s correlation) in
he promoter regions of all genes between chr12–chr17 and
hr18–chr19 with Spearman’s rank correlation. We observed
hat the trend was similar for both chromosome pair 12–17
nd 18–19 with R 

2 values 0.83 and 0.79, respectively, for 1
b 5-mer motif vector comparisons ( Supplementary Figure 
9 and supplementary data of Spearman’s versus Pearson’
 correlations). 

We also identified that the high abundance (OE ≥ 5) of mo-
ifs of size 5 and 6 in the promoter regions holds true for a
ajority ( ∼50%) of the genes ( Supplementary Table S3 ). The

arge number of genes whose promoters have a high abun-
ance of motifs is suggestive that these motifs contribute to
he recognition by some cognate protein regulators. On in-
pecting the motif distribution in promoter regions of 1 kb,
e observed that on average ∼332 motifs out of 512 5-mer
otif pairs and ∼1962 out of 2080 6-mer motif pairs have
E 1 kb_5 / 6-mer ≥ 5 in at least one promoter region. These motifs
aving OE 1 kb_5 / 6-mer ≥ 5 across different promoter-proximal
control regions contribute significantly to the correlations.
We have also identified seven 5-mers and sixteen 6-mers that
have OE 1 kb_5 / 6-mer ≥ 10 in at least 1% of the total genes
in each chromosome ( Supplementary Figure S10 ). These mo-
tifs show OE 1 kb_5 / 6-mer ≥ 10 consistently across all the chro-
mosomes. The seven 5-mer conserved motifs are a subset of
the sixteen 6-mer motifs thus suggesting the conservation of
the base specific recognition by the regulatory partners. The
seven 5-meric motifs (CGGGG, GCGCG, GCGGG, GGCGG,
GGGGC, GGGGG, GGAGG) are all GC motifs (with the ex-
ception of GGAGG). Even though ∼165 and ∼1178 differ-
ent combinations of 5-mer and 6-mer motifs show a high
abundance (OE 1 kb_5 / 6-mer ≥ 10), only seven and sixteen of
them are conserved across promoter proximal control regions.
This implies that for differential regulation, different combi-
nations of these high abundance motifs contribute to the high
correlations. 

Probing the significance of high motif vector 
correlations 

The relevance of high correlations 
We looked at three genes whose promoter motif vectors had
high correlations ( > 0.9) to one another. These genes – LPHN1
(ADGRL1) (adhesion G protein-coupled receptor L1), CDK9
(cyclin dependant kinase 9) and TRIM8 (tripartite motif con-
taining 8) – were from chromosomes 19, 9 and 10, respec-
tively. The correlations between the motif vectors of (LPHN1
and CDK9), (LPHN1 and TRIM8) and (CDK9 and TRIM8)
were 0.905, 0.903 and 0.910, respectively ( Supplementary 
Table S4 ). The reason for the high correlation between these
motif vectors is because of a few motifs that are common to
all three with high OE ratio values ( Supplementary Table S5 ).
We next employed NetworkAnalyst ( 35 ,57 ) to determine if
there were common transcription factors to these three genes
(Figure 4 A). Among the many transcription factors associ-
ated with these genes, two – SP1 and TFAP2A – were com-
mon to all three genes. We use JASPER ( 58 ,59 ) to get the
consensus sequence recognized by these transcription factors
( Supplementary Table S5 ). 

The TF consensus for SP1 and TFAP2A from JASPAR
can be interpreted as NNGGNNN[G / T][G / C / A][T / A] and
GCCNNN[G / A][G / A / T][G / C] respectively. For SP1, a sub-
set of three 5-mer motifs that can be derived from the con-
sensus (GGCGG, CGGGG, GCCGG) have OE values above
10. Similarly, for TFAP2A, seven 5-mer motifs (GCGGC,
GGGCG, GCCCG, GGGCC, GGCCG, GCCGG, GGGGC)
derived from the consensus have OE values above 10 in all
three gene promoters ( Supplementary Table S5 ). It is impor-
tant to note here that there were other 5-mers apart from
those matching with the consensus that also had high OE
values ( Supplementary Table S5 ). From these data, it is clear
that both the common transcription factors have an abundant
number of binding sites on the promoters of all three genes. 

An inspection of the tissues in which these three genes and
their common two transcription factors are expressed reveals
an interesting fact. The genes are almost ubiquitously ex-
pressed and the same is true for the transcription factor SP1
( https:// www.ncbi.nlm.nih.gov/ gene/ 6667 ). TFAP2A is how-
ever expressed in fewer tissue types ( https://www.ncbi.nlm.
nih.gov/ gene/ 7020 ) with a high expression in skin, placenta
and salivary gland. For instance, LPHN1, CDK9 and TRIM8
are all implicated in functions related to fat ( 60–64 ). TFAP2A

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
https://www.ncbi.nlm.nih.gov/gene/6667
https://www.ncbi.nlm.nih.gov/gene/7020


8 Nucleic Acids Research , 2025, Vol. 53, No. 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/53/1/gkae1178/7919520 by IISER

 Pune user on 07 July 2025
is expressed at low levels in adipose tissue. We conjecture that
in fat, SP1 is the common regulator of all three genes. In other
tissues, both SP1 and TFSP2A could assist in transcription,
perhaps redundantly. 

We also examined the relative abundances of motifs in the
promoters for TFs that were common to two of the three
proteins. We looked for motifs that were abundant in the
promoters of two of the genes while being poorly repre-
sented in the other ( Supplementary Table S5 ). The TFs E2F1,
HINFP and RELA are the TFs that are common between
(LPNH1 and TRIM8), (CDK9 and LPNH1) and (CDK9
and TRIM8) respectively. The JASPAR consensus motifs for
these TFs can be interpreted as TTT[G / C][G / C]CG[C / G],
[A / G]C / G]GTCCGC and [G / C / T][G / T]G[A / G]NTTTCC,
respectively. Though there are TF consensus derived motifs
that have higher OE ratio values in the promoters of the two
genes sharing the same TF than the one not in common, the
absolute values of the abundances are somewhat low. We no-
ticed this for all three TFs E2F1, HINFP and RELA where 3,
5 and 1 motifs showed such relative abundances respectively.
This may be indicative of the fact that differential regulation
may not always involve TFs alone. As pointed out in the case
of SP1 and TFAP2A, there are other motifs that are common
to the promoters and present in high abundance but not linked
to the TF. These are likely to be motifs that are recognized by
other regulatory elements. 

The illustration (Figure 4 ) with the three genes and two
common transcription factors exemplifies the mechanism of
differential control of gene regulation. To ensure that regula-
tors, such as transcription factors, bind to the promoter re-
gion there is an abundance of such binding sites on the pro-
moter. In the 1 kb promoter regions of LPHN1, CDK9 and
TRIM8 there are (22, 22, 31, 16) and (16, 20) binding sites for
(SP1, TFAP2A) respectively. In general, the larger the number
of such binding sites in the promoter region, the greater the
probability of binding of the regulatory element. The redun-
dancy in binding sites also ensures robustness in the case of
mutations. The composite set of motifs in promoter regions is
such that their extent of correlation to other promoter regions
varies. On one end of the spectrum, there are high correlations,
where the same set of motifs are repeated several times in a
pair ( Supplementary Table S3 and Supplementary Figure S10 ).
Then there are correlations that are just high enough to be
above a threshold. In such cases, it is likely that a pair shares
a few common motifs of high OE ratios while there are oth-
ers with high OE ratios in one promoter and not the other
( Supplementary Table S5 ). A single promoter could hence
have motifs in common with several other promoters which
in turn may not be correlated to one another. This would form
the basis of differential regulation ( 65 ). 

Constructing a gene regulatory network 

Following up on the theme of how differential regulation can
be affected in cells, we looked at the promoter regions of all
genes that were known to be transcribed by the same tran-
scription factor(s) – Jun / Fos ( 66 ,67 ). We selected a set of 19
genes whose transcription is controlled by the transcription
factors Jun / Fos ( 68 ). The genes were identified in mouse while
our analysis considered the human homologous of the mouse
genes. 

An all-versus-all correlation was done using the promoter
motif vectors over this gene set (Figure 4 B). Some of the genes
are more closely correlated with a few of the other genes and
the pattern of clusters that emerge has three major groups of 
10, 4 and 6 genes. The genes were clustered into three groups 
based on the genes which have higher correlations within 

themselves compared to others in the list of genes. Within each 

cluster, the genes are better correlated to one another than they 
are to the genes in other clusters. There is a nuanced patterning 
of the high-scoring common motifs among these gene clusters 
that lead to higher intra-cluster correlation values. An inter- 
esting observation here is that the Fos / Jun binding consensus 
motif TGACTCA is not among the motifs with high OE ratio 

values. The motifs with high OE here that are in common to 

several genes (such as motif CGCGG present in genes BCL2,
BCL2L11, HBEGF and EGFR) could be binding sites of some 
gene regulators (identity unknown) (supplementary data of 
AP1 network). This example shows how one could construct 
a gene regulatory network by clustering together genes whose 
promoters share the same motifs. 

Spatiall y pro ximal genes ha v e strong motif v ector correlations 
We rationalized that genes whose promoters are correlated 

are likely to be coregulated. Our next investigation was to 

check how often correlation / coregulation implied colocaliza- 
tion and whether we could predict it. Experimentally, colocal- 
ization is inferred using chemical cross linking such as in Hi-C 

( 9 ,16 ). Data from Hi-C experiments are at the resolution of a 
few kb or even tens of kb. Our computations however are at 
a higher resolution as our inferences are drawn from 5 / 6 base 
motifs. More precisely, we are interested in the abundances of 
all 5 / 6-mer motifs in a given sequence stretch, variously con- 
sidered as 1, 2 and 6 kb immediately upstream of genes. We 
also looked at promoter capture Hi-C data (pcHi-C), which 

captures distal promoter interacting regions for all promoters 
( 69 ). We looked at the correlation of genes that overlap with 

these regions detected by Hi-C experiments and how they are 
correlated at different resolutions. In this study, we used two 

datasets: (i) Hi-C data of long-range chromatin contacts in 

HCT116 colon cancer cells ( 36 ) (accessible under GEO acces- 
sion number GSE18215) and (ii) pcHi-C data, which looks at 
novel gene contacts associated with autoimmune risk loci ( 37 ) 
(accessible under GEO accession number: GSM1704495). 

Three important caveats apply to our analysis: (i). Hi-C 

records cross links across the genome without any prejudice 
to any region(s). Our data, in this study, is restricted to cor- 
relations in gene promoter regions only. This implies that we 
would only be able to compare our correlation data to a sub- 
set of Hi-C data that cross link promoter regions of genes. We 
make a higher number of predictions as we consider all pos- 
sible gene pair correlations between the two chromosomes.
(ii). The resolution of data for the both the Hi-C and the 
pcHi-C experiments are in the order of ∼10 kb, whereas our 
predictions, that examine 5 / 6 bp, are of higher resolution.
(iii). Different Hi-C experiments use different genome refer- 
ence assemblies to establish the genomic coordinates between 

two chromosomes that are in proximity. The gene annotations 
vary with each reference assembly ( Supplementary Table S6 ).
We have used all the gene annotations according to the latest 
T2T reference assembly. Thus, it is likely that we are missing 
out on some gene correlations, because of discrepancies in the 
annotations across different reference assemblies. 

Here we have compared our motif vector correlations to 

Hi-C data for a couple of chromosomes – 18 and 19 – that 
have 1022 (spread over ∼80.5 Mbps) and 2531 genes (spread 

over ∼61.7 Mbps), respectively. These two chromosomes 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
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Figur e 4. P anel ( A ) is a graph represent ation of a gene regulatory net w ork in v olving three genes LPHN1, CDK9 and TRIM8 (sho wn as red nodes). Each 
such red node is connected via edges to transcription factors controlling their expression (cyan nodes). Panel ( B ) shows a gene–gene interaction heat 
map of OE 1 kb_5-mer for 18 genes that are all regulated by the transcription f actor J un-Fos. T he higher (or lo w er) the correlation the darker the shade of red 
(or bluer) is the grid. 
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Table 2. Comparison of gene-pair correlation inter- and intra-chromosome 
18 and chromosome 19 in Hi-C contacts versus all 

Chr-pair 
Gene pairs with motif 

vector correlation ≥0.5 

Gene pairs in Hi-C 

with motif vector 
correlation ≥0.5 

1 kb 5-mer 1 kb 6-mer 1 kb 5-mer 1 kb 6-mer 

Chr 18–chr 19 9.92% 0.47% 14.38% 1.01% 

Chr 18–chr 18 9.96% 1.18% 18.84% 7.72% 

Chr 19–chr 19 15.10% 0.90% 22.18% 3.74% 
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ere chosen because they localize differently in the nucleus
18 is peripheral while 19 is mostly internalized ( 70 ,71 ) and
ave contrasting gene densities ( 72 ) ( Supplementary Figure 
3 ). The Hi-C data provides the contact links for different
arts of the two chromosomes. We obtained the coordinates
f the contacts between the two chromosomes and obtained
he genes whose coordinates overlap with the Hi-C contacts.
he extraction of the gene information was done using the re-
pective reference assembly that was used to generate the Hi-C
ata. 
According to the 10 kb bin long range chromatin contact
i-C data, there are 1 327 617, 699 290 and 23 688 Hi-
 contacts intra-chromosome-18, intra-chromosome-19 and

nter-18–19, respectively, according to the GRCh38 reference
ssembly. Of these, only 12 790, 115 595 and 926 are con-
acts overlap with regions having genes in intra-18, intra-19
nd inter-18–19, respectively. Overlap with gene pairs is estab-
ished when both Hi-C contact bins have a gene (in whole or
art). Expectedly, the number of inter-18–19 contacts is small
n comparison to the intra-chromosome contacts given their
ifferent localizations. The aim here was to determine if the
ene pairs whose promoter motif vector are correlated are also
hysically proximal. Of the overlaps determined, only 12 213,
11 730 and 890 gene-pairs find a match with the current T2T
ene annotation list which is our reference for the motif vector
orrelations (supplementary data of Hi-C validation). 

We identify the genes having motif vector correlation scores
0.5 from the inter and intra chr18, chr19 Hi-C contacts. We

ee enrichment in the motif vector correlations in the Hi-C
ontacts for all the inter and intra-Hi-C contacts at all res-
lutions of motif vector correlations at different sizes (Ta-
le 2 ). We also verified if the high correlations between the
ene promoter are a result of sequential proximity between
he genes / promoters. As a control, we plotted the distance
etween the genes against the correlation of their promoter
egions. We observe that high correlations between gene pro-
moter regions are not dependent on the sequential proxim-
ity of the genes ( Supplementary Figure S11 ). It is to be noted
that this comparison was done only across intra-gene corre-
lations as we cannot determine the sequential proximity of
inter-chromosome correlations. 

We repeated this analysis using pcHi-C data using chromo-
some pairs 18 and 19 and obtained 3655 contacts. Of these,
123 gene coordinates overlap with the pcHi-C contacts ac-
cording to the GRCh37 reference assembly ( Supplementary 
Table S7 and supplementary data of Hi-C validations). 118
of the 123 gene-pairs match with our correlations using cur-
rent T2T reference assembly gene annotations (Table 3 and
Supplementary Table S6 ). 

Of all the 2 586 682 possible gene pairs of chromosomes
18 and 19 256 623 (9.92% of 1 kb_5-mer) have motif vec-
tor correlations of ≥0.5 ( Supplementary Table S7 ). A total of
128 (14.32%) gene pairs with Hi-C contacts have a motif vec-
tor correlation ≥0.5, an enrichment of ∼5%. This number is
27 ( ∼23%%) for pcHi-C. Interestingly there is no overlap be-
tween the Hi-C and the pcHi-C data ( Supplementary Figure 
S12 ). Cumulatively, the motif vector correlations of ≥0.5 iden-
tify 155 pairs of genes that are experimentally linked to one
another, which is an enrichment of 37%. Given that the two
different types of Hi-C have no overlaps, it is possible that

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
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Table 3. Distribution of gene pairs contributing to high correlation in Hi-C and pcHi-C 

Dataset Total correlations Correlations ≥0.5 (1 kb 5-mer) 

18-19 18 19 18-19 18 19 

All gene correlations 2 586 682 1022 2531 256 623 (9.92%) 885 2238 
Hi-C 10 kb bins with genes 890 a 412 a 655 a 128 (14.38%) 100 112 
pcHi-C bins with genes 118 a 20 a 94 a 27 (22.88%) 12 23 
a the numbers are with reference to genes matching with the T2T reference assembly. 
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many more of the gene pairs identified by our correlations
could be spatially proximal under certain conditions. 

Topologically associated domains (TADs) are well defined
chromosome segments that make more frequent genomic con-
tacts to one another and are hence purportedly in spatial prox-
imity ( 73 ). It has been established that binding sites for the
protein CTCF, characterized by the motif CCCTC, mark the
TAD boundaries ( 74 ,75 ). The CCCTC motif is among the
top 50 most abundantly present motifs in the human genome
(43rd on a list of 512) with an average OE 1 kb_5me value of 1.85
(supplementary data of OE whole rations). On closer inspection,
we observed that 349 (39.2%) and 67 (56.8%) out of the 890
and 118 gene pairs in pcHi-C and Hi-C respectively show an
OE 1 kb_5-mer of the CTCF motif > 3 in both of the genes in con-
tact (supplementary data of Hi-C validation). This number is
enriched when we look at gene pairs with correlation of ≥0.5.
We observed that 93 (72.6%) and 23 (85.2%) out of the 128
and 27 gene pairs with correlation ≥0.5 in pcHi-C and Hi-
C respectively show an OE 1 kb_5-mer of the CTCF motif > 3 in
both of the genes. Interestingly, the OE 1 kb_5-mer for CCCTC
in the promoter regions of gene pairs that have a motif vector
correlation of ≥0.5 and are proximal to Hi-C or the pcHi-C
contacts in chromosomes 18 and 19 has a maximum value of
∼20, with a mean of ∼3.5–4.5. ( Supplementary Figure S13
and supplementary data of Hi-C validation). In contrast, the
OE 1 kb_5-mer for the other motifs in the genes in proximity, do
not exceed a maximum of 2.5, with their means ranging from
∼1 to 1.5. Thus, the CTCF motif is one of the major contrib-
utors to the high correlation (correlation coefficient ≥0.5) for
gene pairs in proximity. 

The motif vector correlations are high among gene pairs
that also have Hi-C contacts. This opens up the possibility
that Hi-C contacts could be predicted from gene correlations.
There is no overlap between the 123 and 926 gene pairs iden-
tified by Hi-C and pcHi-C respectively. Though these data in-
volve 15 and 33 genes from chromosomes 18 and 19, respec-
tively, they are always matched with different partner genes in
the two sets of data ( Supplementary Figure S12 ). 

Discussions 

In this study, we have attempted to read parts of the genome
just as they would be perceived by the proteins that interact
with them, i.e. 4 to 6 base pairs at a time. These are data we
have obtained by observing DNA–protein complexes. For our
analysis, we simplistically and separately contend that DNA
binding proteins recognize their cognate sites on genomes by
making interaction with either 5 or 6 bases per domain. Some
databases list consensus binding sites that are longer – but
these are usually in cases where the DNA binding domains

dimerise. 
How are 5 / 6 mers of DNA distributed in the genome? 
There are a total of 512 and 2080 unique 5-mers and 6-mers 
respectively that were obtained by averaging the values of mo- 
tifs and their corresponding reverse complements. We have 
shown that the distribution of these 5 / 6-mers is non-random.
In real genomes, there are regions of the genome where cer- 
tain motifs are over or under-represented. We have quantified 

this using the OE ratios. The non-randomness of the motif 
distributions happens at the scale of the whole chromosome 
or even at the level of smaller segments of the genome such as 
100 kb stretches or even around centromeric regions across all 
chromosomes. Using the simple metric of OE centromere ratios,
we establish a unique pattern of motif distributions conserved 

across the different acrocentric chromosomes ( 13–15 ,21 ) and 

( 22 ). The centromeres of these chromosomes are known to 

have segmental duplications and our analysis using only the 
motif distributions in these regions also identifies similarities.

Having established that the motif distributions follow non- 
random patterns we next investigated its possible relevance.
For this, we first correlated (Pearson correlation) the motif 
distributions in promoter regions of genes. To do this we con- 
structed motif vectors of the 5 / 6-mer motifs where the coef- 
ficients of the vectors are the OE ratios of the motifs. After 
establishing that the motif distributions follow non-random 

patterns we next investigated its possible relevance. For this,
we first correlated (Pearson correlation) the motif distribu- 
tions in promoter regions of genes. To do this we constructed 

motif vectors of the 5 / 6-mer motifs where the coefficients of 
the vectors are the OE ratios of the motifs. We observed that 
certain 5- and 6-mer motifs have high abundance across the 
majority of the promoter regions of genes ( ∼50%). We identi- 
fied seven 5-mers and sixteen 6-mers that are conserved across 
the promoter regions in different chromosomes. These mo- 
tifs of high abundance suggest identification by some cognate 
protein regulators. When the correlation values of all genes 
are taken together chromosome-wise, we observed that there 
were some chromosome pairs with very strong correlations 
( ≥0.9). We have highlighted two such clusters of high correla- 
tions – between chromosomes (13–15, 21 and 22) and (4,10).
In both these cases there are documented instances of chro- 
mosome translocations amongst cluster members. The (13–
15, 21, 22) clusters are the same acrocentric chromosomes 
discussed above. The mix and match of chromosomal seg- 
ments between these genes is termed Robertsonian transloca- 
tions and is implicated in genetic diseases such as Patau syn- 
drome ( 76 ) and Down syndrome ( 77 ). Translocations between 

chromosomes 4 and 10 are associated with certain types of 
leukaemia ( 54 ,55 ) and Wolf–Hirschhorn syndrome ( 56 ). Our 
somewhat simplistic motif vector correlations also pick up on 

these phenomena. Translocations may only be possible when 

there is a high degree of sequence similarity / identity between 

the regions of translocation. However, not all regions sharing 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1178#supplementary-data
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igh similarity / identity may be susceptible to translocations
s it may require the presence of certain motif(s). What mo-
if(s) and their distributions can only be gauged with a focused
nalysis of the translocating segments. The high abundances
f promoter correlations are also an attribute of the tandem
epeats in the promoter regions of the rRNA genes across these
hromosomes. The patterns of high correlation across gene
romoters are also distinct from that of downstream regions
f genes or random regions in the chromosomes. 
From the level of chromosomes, we went down to the level

f individual genes, more precisely to the promoter region of
enes. We showed that when two genes have high correlations
etween their promoter vector motifs there is usually a func-
ional implication. For instance, the genes LPNH1 from chro-
osome 19, CDK9 from chromosome 9 and TRIM8 from

hromosome 10 are all strongly correlated to one another
correlation coefficient > 0.9). The reason for the high corre-
ations there is a common set of motifs that are over / under-
epresented in all their promoter regions. Examining the over-
bundant motifs, we found that the motifs GGCGG and
CGGG were among the ones with the highest OE ratios in all

heir promoters and these were the binding sites of transcrip-
ion factors SP1 and TFAP2A. These transcription factors are
ifferentially expressed in different tissue types, for instance,
FAP2A is not found in fat while SP2 is. This, we speculate is

he basis of differential gene regulation in different cell / tissue
ypes. Further, we could construct an entire gene regulatory
etwork by associating gene promoter regions with significant
orrelations. While we are constructing this network, it is too
ast and somewhat beyond the scope of the current investiga-
ion to be reported here. 

Having introduced the possibility of obtaining gene regu-
atory networks, we illustrate this with an example of pro-
oter correlations between all co-regulated genes, i.e. genes

ranscribed by a common transcription factor, Jun / Fos. Here,
e found some gene clusters to be strongly correlated amongst

luster members but not necessarily with members of other
lusters. The reason for this is again the fact that the corre-
ations are strong because of a common set of motifs hav-
ng similar abundances (OE ratios) across promoter regions.
hese motifs are then of functional importance as established

n the case of LPHN1, CDK9 and TRIM8. In this illustra-
ive network, however, the common high abundance motifs
re not transcription binding sites (even though some of the
airs within the network share common transcription factors
ther than Jun / Fos). The Jun / Fos binding motifs themselves
re not among the motifs with the highest ratios. We speculate
hat the over-abundant common set of motifs could be binding
ites for common regulatory elements, perhaps hitherto undis-
overed. Since the high-abundance motifs in promotors within
 single cluster are not identical between cluster members, it
pens up the possibility of differential regulation. 
Our final investigation was to examine whether high gene

romoter correlation also implied physical proximity. Here
he results are interesting and suggestive of the predictive
ower of these motif vector correlations. We compared our re-
ults to Hi-C data that show physicalproximity between genic
egions using cross-linking. Promoter pairs that overlapped
ith Hi-C data had an enrichment for high motif vector cor-

elations (coefficients ≥0.5). This enrichment was consistent
hen the analysis was repeated with pcHi-C. While process-

ng this result, we should bear in mind that the number of
ene–gene promoter correlations with coefficients > 0.5 is at
least an order of magnitude greater than the amount of Hi-C
data available to us. While it is unlikely that all strongly corre-
lated gene–gene promoter regions imply physical proximity, it
is possible that many of them do, even though there is no Hi-
C data to support the claim. The reason for this could be that
Hi-C data is typically of a resolution of 10 kb (in many cases
> 10 kb), while we are examining the genome at a higher res-
olution (length scale of 5 / 6 base pairs). The promoter regions
of the genes in Hi-C contacts also showed a high abundance of
the CTCF binding motifs that regulates the TAD organization.
One significant observation we made was the lack of overlap
between the different Hi-C data. The gene pairs present in the
bins with the Hi-C contacts do not overlap with the pcHi-C
data. This can be an attribute of the difference in the reference
assembly used to generate the Hi-C and also the possible dif-
ferent crosslinks in different cell types. Our observations on
high correlations are made with the latest reference assembly,
and are independent of cell type. One other reason why some
of our high correlations are not validated by Hi-C data could
be that even though the genes are in close proximity, they may
not have been close enough to be detected by Hi-C, but could
be close enough to be co-regulated. We are also aware that
spatial proximity may not always follow from strong motif
vector correlations even though the genes are co-regulated.
For instance, transcription factors that have peripheral loca-
tions on the nucleus could co-regulate two (or more) genes
that are spatially distant but are also somewhat close to the
nuclear outer periphery. These results open up the possibil-
ity of predicting, at a high resolution, 3D proximities within
genomes. Potentially, this could give us a more nuanced map
of the genomic arrangement within the nucleus and how it
changes from one cell type to another or even during different
cell phases. 

Typically, analysis of genes / promoters / genomes etc. in-
volves sequence alignments. While the benefits of alignments
are undeniable, this study shows that it is insightful and signif-
icant to read the genome 5 / 6 bases at a time, just as proteins
that bind DNA do. From a rather simplistic consideration of
the distribution of 5 / 6-mers in the chromosome or smaller
stretches of the genomes (such as promoter regions), we can
make fundamental connections between genes and chromo-
somes. For instance, given that we can detect patterns where
translocations are likely to occur, predict the proximity of cor-
related (co-regulated) genes, and give ourselves the ability to
construct regulatory networks, we see great benefit in exam-
ining motif abundances in the genome. 
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